Extreme edge-friendly indices of complete bipartite graphs

IF 0.6 Q3 MATHEMATICS
W. Shiu
{"title":"Extreme edge-friendly indices of complete bipartite graphs","authors":"W. Shiu","doi":"10.22108/TOC.2016.12473","DOIUrl":null,"url":null,"abstract":"Let $G=(V,E)$ be a simple graph‎. ‎An edge labeling $f:Eto {0,1}$ induces a vertex labeling $f^+:Vto Z_2$ defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$‎, ‎where $Z_2={0,1}$ is the additive group of order 2‎. ‎For $iin{0,1}$‎, ‎let‎ ‎$e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$‎. ‎A labeling $f$ is called edge-friendly if‎ ‎$|e_f(1)-e_f(0)|le 1$‎. ‎$I_f(G)=v_f(1)-v_f(0)$ is called the edge-friendly index of $G$ under an edge-friendly labeling $f$‎. ‎Extreme values of edge-friendly index of complete bipartite graphs will be determined‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"5 1","pages":"11-21"},"PeriodicalIF":0.6000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2016.12473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let $G=(V,E)$ be a simple graph‎. ‎An edge labeling $f:Eto {0,1}$ induces a vertex labeling $f^+:Vto Z_2$ defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$‎, ‎where $Z_2={0,1}$ is the additive group of order 2‎. ‎For $iin{0,1}$‎, ‎let‎ ‎$e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$‎. ‎A labeling $f$ is called edge-friendly if‎ ‎$|e_f(1)-e_f(0)|le 1$‎. ‎$I_f(G)=v_f(1)-v_f(0)$ is called the edge-friendly index of $G$ under an edge-friendly labeling $f$‎. ‎Extreme values of edge-friendly index of complete bipartite graphs will be determined‎.
完全二部图的极边友好指标
设$G=(V,E)$是一个简单图。一个标记$f:Eto{0,1}$的边可以得到一个标记$f^+:Vto Z_2$的顶点,它由$f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$定义,其中$Z_2={0,1}$是2阶的加性群。为{0,1}时候美元‎‎,让‎‎‎e_f美元(i) f = | ^ {1} (i) | $和$ v_f (i) = | (f) ^ + ^ {1} (i) | $‎。如果$ $|e_f(1)-e_f(0)|le 1$ $,则标记$f$被称为边友好型。$I_f(G)=v_f(1)-v_f(0)$称为$G$在边友好标记$f$下的边友好指数。完全二部图的边友好指数的极值将被确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信