Convergence theorem and convergence rate of a new faster iteration method for continuous functions on an arbitrary interval

IF 0.9 4区 数学 Q1 Mathematics
Chonjaroen Chairatsiripong, L. Kittiratanawasin, D. Yambangwai, T. Thianwan
{"title":"Convergence theorem and convergence rate of a new faster iteration method for continuous functions on an arbitrary interval","authors":"Chonjaroen Chairatsiripong, L. Kittiratanawasin, D. Yambangwai, T. Thianwan","doi":"10.18514/mmn.2023.3978","DOIUrl":null,"url":null,"abstract":". The aim of this paper is to propose a new faster iterative method, called the MN-iteration process, for approximating a fixed point of continuous functions on an arbitrary interval. Then, a necessary and sufficient condition for the convergence of the MN-iteration of continuous functions on an arbitrary interval is established. We also compare the rate of convergence between the proposed iteration and some other iteration processes in the literature. Specifically, our main result shows that MN-iteration converges faster than NSP-iteration to the fixed point. We finally give numerical examples to compare the result with Mann, Ishikawa, Noor, SP and NSP iterations. Our findings improve corresponding results in the contemporary literature.","PeriodicalId":49806,"journal":{"name":"Miskolc Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18514/mmn.2023.3978","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

. The aim of this paper is to propose a new faster iterative method, called the MN-iteration process, for approximating a fixed point of continuous functions on an arbitrary interval. Then, a necessary and sufficient condition for the convergence of the MN-iteration of continuous functions on an arbitrary interval is established. We also compare the rate of convergence between the proposed iteration and some other iteration processes in the literature. Specifically, our main result shows that MN-iteration converges faster than NSP-iteration to the fixed point. We finally give numerical examples to compare the result with Mann, Ishikawa, Noor, SP and NSP iterations. Our findings improve corresponding results in the contemporary literature.
任意区间上连续函数的一种新的快速迭代方法的收敛定理和收敛速度
. 本文的目的是提出一种新的快速迭代方法,称为n -迭代过程,用于逼近任意区间上连续函数的不动点。然后,给出了连续函数n次迭代在任意区间上收敛的充分必要条件。我们还比较了所提出的迭代和文献中其他一些迭代过程之间的收敛速度。具体而言,我们的主要结果表明mn迭代比nsp迭代收敛到不动点的速度更快。最后给出数值算例,将结果与Mann、Ishikawa、Noor、SP和NSP迭代进行比较。我们的发现改进了当代文献中的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Miskolc Mathematical Notes
Miskolc Mathematical Notes Mathematics-Algebra and Number Theory
CiteScore
2.00
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信