New Lower Bounds for the Number of Conjugacy Classes in Finite Nilpotent Groups

IF 0.7 Q2 MATHEMATICS
E. Bertram
{"title":"New Lower Bounds for the Number of Conjugacy Classes in Finite Nilpotent Groups","authors":"E. Bertram","doi":"10.22108/IJGT.2021.128396.1687","DOIUrl":null,"url":null,"abstract":"P.Hall's classical equality for the number of conjugacy classes in p-groups yields k(G) >= (3/2)log_2 |G|when G is nilpotent. Using only Hall's theorem, this is the best one can do when |G| = 2^n. Using aresult of G.J. Sherman, we improve the constant 3/2 to 5/3, which is best possible across all nilpotentgroups and to 15/8 when G is nilpotent and |G| is not equal to 8 or 16. These results are then used to prove that k(G) > log_3 |G| when G/N is nilpotent, under natural conditions on N (normal in) G. Also,when G' is nilpotent of class c, we prove that k(G) >= (log |G|)^t when |G| is large enough, dependingonly on (c,t).","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2021.128396.1687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

P.Hall's classical equality for the number of conjugacy classes in p-groups yields k(G) >= (3/2)log_2 |G|when G is nilpotent. Using only Hall's theorem, this is the best one can do when |G| = 2^n. Using aresult of G.J. Sherman, we improve the constant 3/2 to 5/3, which is best possible across all nilpotentgroups and to 15/8 when G is nilpotent and |G| is not equal to 8 or 16. These results are then used to prove that k(G) > log_3 |G| when G/N is nilpotent, under natural conditions on N (normal in) G. Also,when G' is nilpotent of class c, we prove that k(G) >= (log |G|)^t when |G| is large enough, dependingonly on (c,t).
有限幂零群中共轭类数的新下界
当G为幂零时,p群中共轭类数的P.Hall经典等式得到k(G) >= (3/2)log_2 |G|。只使用霍尔定理,当|G| = 2^n时,这是最好的。利用G.J. Sherman的结果,我们将常数3/2改进为5/3,它在所有幂零群中都是最好的,当G为幂零且|G|不等于8或16时,它是15/8。然后用这些结果证明了当G/N为幂零时,在N(正态)G上的自然条件下,k(G) > log_3 |G|。同样,当G'为c类的幂零时,我们证明了当|G|足够大时,k(G) >= (log |G|)^t,仅依赖于(c,t)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信