On some projective triply-even binary codes invariant under the Conway group ${rm Co}_1$

IF 0.7 Q2 MATHEMATICS
B. Rodrigues
{"title":"On some projective triply-even binary codes invariant under the Conway group ${rm Co}_1$","authors":"B. Rodrigues","doi":"10.22108/IJGT.2021.123705.1632","DOIUrl":null,"url":null,"abstract":"A binary triply-even $[98280, 25, 47104]_2$ code invariant under the sporadic simple group ${rm Co}_1$ is constructed by adjoining the all-ones vector to the faithful and absolutely irreducible 24-dimensional code of length 98280. Using the action of ${rm Co}_1$ on the code we give a description of the nature of the codewords of any non-zero weight relating these to vectors of types 2, 3 and 4, respectively of the Leech lattice. We show that the stabilizer of any non-zero weight codeword in the code is a maximal subgroup of ${rm Co}_1$. Moreover, we give a partial description of the nature of the codewords of minimum weight of the dual code.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":"14 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2021.123705.1632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

A binary triply-even $[98280, 25, 47104]_2$ code invariant under the sporadic simple group ${rm Co}_1$ is constructed by adjoining the all-ones vector to the faithful and absolutely irreducible 24-dimensional code of length 98280. Using the action of ${rm Co}_1$ on the code we give a description of the nature of the codewords of any non-zero weight relating these to vectors of types 2, 3 and 4, respectively of the Leech lattice. We show that the stabilizer of any non-zero weight codeword in the code is a maximal subgroup of ${rm Co}_1$. Moreover, we give a partial description of the nature of the codewords of minimum weight of the dual code.
康威群${rm Co}_1$下一些三偶射影二进制码的不变性
在偶发单群${rm Co}_1$下构造了一个二元三偶$[98280,25,47104]_2$码不变量,其方法是将全一向量与长度为98280的忠实且绝对不可约的24维码相邻。利用${rm Co}_1$对码的作用,我们给出了与Leech晶格中类型2,3和4的向量相关的任意非零权码字的性质的描述。证明了码中任意非零权码字的稳定器是${rm Co}_1$的极大子群。此外,我们还给出了对偶码的最小权码字性质的部分描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信