Induced operators on the generalized symmetry classes of tensors

IF 0.7 Q2 MATHEMATICS
Gholamreza Rafatneshan, Y. Zamani
{"title":"Induced operators on the generalized symmetry classes of tensors","authors":"Gholamreza Rafatneshan, Y. Zamani","doi":"10.22108/IJGT.2020.122990.1622","DOIUrl":null,"url":null,"abstract":"‎Let $V$ be a unitary space‎. ‎Suppose $G$ is a subgroup of the symmetric group of degree $m$ and $Lambda$ is an irreducible unitary representation of $G$ over a vector space $U$‎. ‎Consider the generalized symmetrizer on the tensor space $Uotimes V^{otimes m}$‎, ‎$$ S_{Lambda}(uotimes v^{otimes})=dfrac{1}{|G|}sum_{sigmain G}Lambda(sigma)uotimes v_{sigma^{-1}(1)}otimescdotsotimes v_{sigma^{-1}(m)} $$ defined by $G$ and $Lambda$‎. ‎The image of $Uotimes V^{otimes m}$ under the map $S_Lambda$ is called the generalized symmetry class of tensors associated with $G$ and $Lambda$ and is denoted by $V_Lambda(G)$‎. ‎The elements in $V_Lambda(G)$ of the form $S_{Lambda}(uotimes v^{otimes})$ are called generalized decomposable tensors and are denoted by $ucircledast v^{circledast}$‎. ‎For any linear operator $T$ acting on $V$‎, ‎there is a unique induced operator $K_{Lambda}(T)$ acting on $V_{Lambda}(G)$ satisfying $$ K_{Lambda}(T)(uotimes v^{otimes})=ucircledast Tv_{1}circledast cdots circledast Tv_{m}‎. ‎$$ If $dim U=1$‎, ‎then $K_{Lambda}(T)$ reduces to $K_{lambda}(T)$‎, ‎induced operator on symmetry class of tensors $V_{lambda}(G)$‎. ‎In this paper‎, ‎the basic properties of the induced operator $K_{Lambda}(T)$ are studied‎. ‎Also some well-known results on the classical Schur functions will be extended to the case of generalized Schur functions‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2020.122990.1622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

‎Let $V$ be a unitary space‎. ‎Suppose $G$ is a subgroup of the symmetric group of degree $m$ and $Lambda$ is an irreducible unitary representation of $G$ over a vector space $U$‎. ‎Consider the generalized symmetrizer on the tensor space $Uotimes V^{otimes m}$‎, ‎$$ S_{Lambda}(uotimes v^{otimes})=dfrac{1}{|G|}sum_{sigmain G}Lambda(sigma)uotimes v_{sigma^{-1}(1)}otimescdotsotimes v_{sigma^{-1}(m)} $$ defined by $G$ and $Lambda$‎. ‎The image of $Uotimes V^{otimes m}$ under the map $S_Lambda$ is called the generalized symmetry class of tensors associated with $G$ and $Lambda$ and is denoted by $V_Lambda(G)$‎. ‎The elements in $V_Lambda(G)$ of the form $S_{Lambda}(uotimes v^{otimes})$ are called generalized decomposable tensors and are denoted by $ucircledast v^{circledast}$‎. ‎For any linear operator $T$ acting on $V$‎, ‎there is a unique induced operator $K_{Lambda}(T)$ acting on $V_{Lambda}(G)$ satisfying $$ K_{Lambda}(T)(uotimes v^{otimes})=ucircledast Tv_{1}circledast cdots circledast Tv_{m}‎. ‎$$ If $dim U=1$‎, ‎then $K_{Lambda}(T)$ reduces to $K_{lambda}(T)$‎, ‎induced operator on symmetry class of tensors $V_{lambda}(G)$‎. ‎In this paper‎, ‎the basic properties of the induced operator $K_{Lambda}(T)$ are studied‎. ‎Also some well-known results on the classical Schur functions will be extended to the case of generalized Schur functions‎.
广义对称张量类上的诱导算子
让$V$是一个酉空间。假设$G$是度为$m$的对称群的一个子群,$Lambda$是$G$在向量空间$U$上的不可约酉表示。考虑张量空间$Uotimes V^{otimes m}$上的广义对称器,$$ S_{Lambda}(uotimes v^{otimes})=dfrac{1}{|G|}sum_{sigmain G}Lambda(sigma)uotimes v_{sigma^{-1}(1)}otimescdotsotimes v_{sigma^{-1}(m)} $$由$G$和$Lambda$定义。在$S_Lambda$映射下的$Uotimes V^{otimes m}$图像被称为与$G$和$Lambda$相关的张量的广义对称类,用$V_Lambda(G)$表示。$V_Lambda(G)$中形式$S_{Lambda}(uotimes v^{otimes})$的元素称为广义可分解张量,用$ucircledast v^{circledast}$表示。对于任意作用于$V$的线性算子$T$,存在一个唯一的诱导算子$K_{Lambda}(T)$,作用于$V_{Lambda}(G)$,满足$$ K_{Lambda}(T)(uotimes v^{otimes})=ucircledast Tv_{1}circledast cdots circledast Tv_{m}‎. ‎$$。如果$dim U=1$,则$K_{Lambda}(T)$约化为$K_{lambda}(T)$,张量对称类上的诱导算子$V_{lambda}(G)$。本文研究了诱导算子$K_{Lambda}(T)$的基本性质。此外,一些著名的经典舒尔函数的结果将推广到广义舒尔函数的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信