Conjugate $p$-elements of full support that generate the wreath product $C_{p}wr C_{p}$

IF 0.7 Q2 MATHEMATICS
David Ward
{"title":"Conjugate $p$-elements of full support that generate the wreath product $C_{p}wr C_{p}$","authors":"David Ward","doi":"10.22108/IJGT.2016.7806","DOIUrl":null,"url":null,"abstract":"For a symmetric group G:=symn\">G:=symnG:=symn and a conjugacy class X\">XX of involutions in G\">GG‎, ‎it is known that if the class of involutions does not have a unique fixed point‎, ‎then‎ - ‎with a few small exceptions‎ - ‎given two elements a,x∈X\">a,x∈Xa,x∈X‎, ‎either ⟨a,x⟩\">⟨a,x⟩⟨a,x⟩ is isomorphic to the dihedral group D8\">D8D8‎, ‎or there is a further element y∈X\">y∈Xy∈X such that ⟨a,y⟩≅⟨x,y⟩≅D8\">⟨a,y⟩≅⟨x,y⟩≅D8⟨a,y⟩≅⟨x,y⟩≅D8 (P‎. ‎Rowley and D‎. ‎Ward‎, ‎On π\">ππ-Product Involution Graphs in Symmetric‎ ‎Groups‎. ‎MIMS ePrint‎, ‎2014)‎.  ‎One natural generalisation of this to p\">pp-elements is to consider when two conjugate p\">pp-elements generate a wreath product of two cyclic groups of order p\">pp‎. ‎In this paper we give necessary and sufficient conditions for this in the case that our p\">pp-elements have full support‎. ‎These conditions relate to given matrices that are of circulant or permutation type‎, ‎and corresponding polynomials that represent these matrices‎. ‎We also consider the case that the elements do not have full support‎, ‎and see why generalising our results to such elements would not be a natural generalisation‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":"5 1","pages":"9-35"},"PeriodicalIF":0.7000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2016.7806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

For a symmetric group G:=symn">G:=symnG:=symn and a conjugacy class X">XX of involutions in G">GG‎, ‎it is known that if the class of involutions does not have a unique fixed point‎, ‎then‎ - ‎with a few small exceptions‎ - ‎given two elements a,x∈X">a,x∈Xa,x∈X‎, ‎either ⟨a,x⟩">⟨a,x⟩⟨a,x⟩ is isomorphic to the dihedral group D8">D8D8‎, ‎or there is a further element y∈X">y∈Xy∈X such that ⟨a,y⟩≅⟨x,y⟩≅D8">⟨a,y⟩≅⟨x,y⟩≅D8⟨a,y⟩≅⟨x,y⟩≅D8 (P‎. ‎Rowley and D‎. ‎Ward‎, ‎On π">ππ-Product Involution Graphs in Symmetric‎ ‎Groups‎. ‎MIMS ePrint‎, ‎2014)‎.  ‎One natural generalisation of this to p">pp-elements is to consider when two conjugate p">pp-elements generate a wreath product of two cyclic groups of order p">pp‎. ‎In this paper we give necessary and sufficient conditions for this in the case that our p">pp-elements have full support‎. ‎These conditions relate to given matrices that are of circulant or permutation type‎, ‎and corresponding polynomials that represent these matrices‎. ‎We also consider the case that the elements do not have full support‎, ‎and see why generalising our results to such elements would not be a natural generalisation‎.
共轭$p$-生成环积$C_{p}wr C_{p}$的全支持元素
对称G组:= symn " > G: = symnG: = symn和共轭性类X " >退化的XX G”> GG‎‎,众所周知,如果类退化没有独特的定点‎,然后‎‎-与一些小异常‎‎‎给定的两个元素,∈X " > a, X∈Xa, X X∈‎‎要么⟨,X⟩”>⟨a, X⟩⟨a, X⟩同构的二面角D8“> D8D8‎,‎或有进一步的元素y∈X " > y∈Xy这样⟨∈X, y⟩≅⟨X, y⟩≅D8”>⟨a, y⟩≅⟨X, y⟩≅D8⟨a, y⟩≅⟨X, y⟩≅D8 (P‎。罗利和D。Ward,关于对称群中π ' b> ππ-积对合图。MIMS ePrint, 2014)。一个自然推广到p ' >pp-元素是考虑当两个共轭p ' >pp-元素生成两个p ' >pp-阶环群的环积。本文给出了p ' >p -元素完全支持的充分必要条件。这些条件涉及到给定的循环型或置换型矩阵,以及表示这些矩阵的相应多项式。我们还考虑了元素没有完全支持的情况,并了解为什么将我们的结果推广到这些元素将不是一个自然的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信