ON THE COMMUTATIVITY DEGREE IN FINITE MOUFANG LOOPS

IF 0.7 Q2 MATHEMATICS
K. Ahmadidelir
{"title":"ON THE COMMUTATIVITY DEGREE IN FINITE MOUFANG LOOPS","authors":"K. Ahmadidelir","doi":"10.22108/IJGT.2016.8477","DOIUrl":null,"url":null,"abstract":"‎The commutativity degree‎, ‎Pr(G)\">Pr(G)Pr(G)‎, ‎of a finite group G\">GG (i.e‎. ‎the probability that two (randomly chosen) elements of G\">GGcommute with respect to its operation)) has been studied well by many authors‎. ‎It is well-known that the best upper bound for Pr(G)\">Pr(G)Pr(G) is 58\">5858 for a finite non-abelian group G\">GG‎.  ‎In this paper‎, ‎we will define the same concept for a finite non--abelian Moufang loop M\">MM and try to give a best upper bound for Pr(M)\">Pr(M)Pr(M)‎. ‎We will prove that for a well-known class of finite Moufang loops‎, ‎named Chein loops‎, ‎and its modifications‎, ‎this best upper bound is 2332\">23322332‎. ‎So‎, ‎our conjecture is that for any finite Moufang loop M\">MM‎, ‎Pr(M)≤2332\">Pr(M)≤2332Pr(M)≤2332‎.   ‎Also‎, ‎we will obtain some results related to the Pr(M)\">Pr(M)Pr(M) and ask the similar questions raised and answered in group theory about the relations between the structure of a finite group and its commutativity degree in finite Moufang loops‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":"5 1","pages":"37-47"},"PeriodicalIF":0.7000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2016.8477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

‎The commutativity degree‎, ‎Pr(G)">Pr(G)Pr(G)‎, ‎of a finite group G">GG (i.e‎. ‎the probability that two (randomly chosen) elements of G">GGcommute with respect to its operation)) has been studied well by many authors‎. ‎It is well-known that the best upper bound for Pr(G)">Pr(G)Pr(G) is 58">5858 for a finite non-abelian group G">GG‎.  ‎In this paper‎, ‎we will define the same concept for a finite non--abelian Moufang loop M">MM and try to give a best upper bound for Pr(M)">Pr(M)Pr(M)‎. ‎We will prove that for a well-known class of finite Moufang loops‎, ‎named Chein loops‎, ‎and its modifications‎, ‎this best upper bound is 2332">23322332‎. ‎So‎, ‎our conjecture is that for any finite Moufang loop M">MM‎, ‎Pr(M)≤2332">Pr(M)≤2332Pr(M)≤2332‎.   ‎Also‎, ‎we will obtain some results related to the Pr(M)">Pr(M)Pr(M) and ask the similar questions raised and answered in group theory about the relations between the structure of a finite group and its commutativity degree in finite Moufang loops‎.
有限牟方环的交换度
有限群G”>GG(即)的交换度,' ' Pr(G) ' ' >Pr(G)Pr(G) ' ', ' '。许多作者已经很好地研究了G的两个(随机选择的)元素相对于其操作的交换概率。众所周知,对于有限非阿贝尔群G ' >GG ', Pr(G) ' b> Pr(G) ' Pr(G) '的最佳上界是58 ' >5858。在本文中,我们将对有限非阿贝尔牟方环定义相同的概念,并尝试给出Pr(M)”>Pr(M)Pr(M)”的最佳上界。我们将证明对于一类著名的有限Moufang环,称为Chein环及其修正,其最佳上界是2332”bb0 23322332”。因此,我们的猜想是,对于任意有限牟方环M ' >MM ', ' Pr(M)≤2332 ' >Pr(M)≤2332Pr(M)≤2332 '。同时,我们将得到一些关于Pr(M)”>Pr(M)Pr(M)”的结果,并提出在群论中关于有限方环中有限群的结构与其交换度之间的关系的类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信