Numerical solution of the conformable fractional diffusion equation

IF 0.9 4区 数学 Q1 Mathematics
H. Yaslan
{"title":"Numerical solution of the conformable fractional diffusion equation","authors":"H. Yaslan","doi":"10.18514/mmn.2022.3669","DOIUrl":null,"url":null,"abstract":"In this paper, a numerical approach for solving space-time fractional diffusion equation with variable coefficients is proposed. The fractional derivatives are described in the conformable sense. The numerical approach is based on shifted Chebyshev polynomials of the second kind. The space-time fractional diffusion equation with variable coefficients is reduced to a system of ordinary differential equations by using the properties of Chebyshev polynomials. The finite difference method is applied to solve this system of equations. Numerical results are provided to verify the accuracy and efficiency of the proposed approach.","PeriodicalId":49806,"journal":{"name":"Miskolc Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18514/mmn.2022.3669","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a numerical approach for solving space-time fractional diffusion equation with variable coefficients is proposed. The fractional derivatives are described in the conformable sense. The numerical approach is based on shifted Chebyshev polynomials of the second kind. The space-time fractional diffusion equation with variable coefficients is reduced to a system of ordinary differential equations by using the properties of Chebyshev polynomials. The finite difference method is applied to solve this system of equations. Numerical results are provided to verify the accuracy and efficiency of the proposed approach.
适形分数扩散方程的数值解
本文提出了一种求解变系数空时分数阶扩散方程的数值方法。分数阶导数是在符合意义上描述的。数值方法是基于第二类移位切比雪夫多项式。利用切比雪夫多项式的性质,将变系数时空分数扩散方程化为常微分方程组。用有限差分法求解了这个方程组。数值结果验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Miskolc Mathematical Notes
Miskolc Mathematical Notes Mathematics-Algebra and Number Theory
CiteScore
2.00
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信