Tenocyte anabolic and catabolic response to elevation in intracellular tension

Q4 Engineering
Eijiro Maeda, M. Sugimoto, Youtaro Kosato, C. T. Poon, B. Pingguan-Murphy, T. Ohashi
{"title":"Tenocyte anabolic and catabolic response to elevation in intracellular tension","authors":"Eijiro Maeda, M. Sugimoto, Youtaro Kosato, C. T. Poon, B. Pingguan-Murphy, T. Ohashi","doi":"10.17106/JBR.28.16","DOIUrl":null,"url":null,"abstract":"The present study examined expressions of type I collagen and MMP-1 mRNA of bovine tenocytes in response to elevation in intracellular tension/traction forces induced by either mechanical or chemical stimulation. Tenocytes were cultured in the following conditions: micropillars with the Young’s modulus of 75 kPa in a normal culture medium, in the presence of 1 nM calyculin A in the medium or under 4 or 8% static tensile strain in the normal medium. In all the treatments, cell traction forces were increased significantly from the levels of corresponding control tenocytes. However, these increases in traction forces were not associated with statistically significant increase in type I collagen gene expression. Because our treatments induced the increase in traction forces equidirectionally, it is speculated that highly directional increase in traction forces, associated with an elongated cell shape, is required to induce marked upregulation of type I collagen mRNA expression in tenocytes.","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"28 1","pages":"16-20"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biorheology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17106/JBR.28.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

The present study examined expressions of type I collagen and MMP-1 mRNA of bovine tenocytes in response to elevation in intracellular tension/traction forces induced by either mechanical or chemical stimulation. Tenocytes were cultured in the following conditions: micropillars with the Young’s modulus of 75 kPa in a normal culture medium, in the presence of 1 nM calyculin A in the medium or under 4 or 8% static tensile strain in the normal medium. In all the treatments, cell traction forces were increased significantly from the levels of corresponding control tenocytes. However, these increases in traction forces were not associated with statistically significant increase in type I collagen gene expression. Because our treatments induced the increase in traction forces equidirectionally, it is speculated that highly directional increase in traction forces, associated with an elongated cell shape, is required to induce marked upregulation of type I collagen mRNA expression in tenocytes.
细胞内张力升高对小细胞合成代谢和分解代谢的反应
本研究检测了机械或化学刺激引起的细胞内张力/牵引力升高时,牛腱细胞I型胶原和MMP-1 mRNA的表达。在以下条件下培养细胞:在正常培养基中,杨氏模量为75 kPa的微柱,在培养基中存在1 nM的calyculin a,或在正常培养基中处于4或8%的静态拉伸应变下。在所有处理中,细胞牵引力都比相应的对照细胞水平显著增加。然而,这些牵引力的增加与I型胶原基因表达的统计学显著增加无关。由于我们的处理诱导了等向牵引力的增加,推测牵引力的高度定向增加,与细长的细胞形状相关,是诱导腱细胞中I型胶原mRNA表达显著上调所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biorheology
Journal of Biorheology Engineering-Mechanical Engineering
CiteScore
0.50
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信