José Renato Guimarães, Kaíque Souza Gonçalves Cordeiro Oliveira, Maria Carolina Pereira Gonçalves, João Paulo Romanelli, Laiane Antunes Lopes, Ángel Berenguer-Murcia, Roberto Fernandez-Lafuente and Paulo Waldir Tardioli
{"title":"A review of lipase immobilization on hydrophobic supports incorporating systematic mapping principles†","authors":"José Renato Guimarães, Kaíque Souza Gonçalves Cordeiro Oliveira, Maria Carolina Pereira Gonçalves, João Paulo Romanelli, Laiane Antunes Lopes, Ángel Berenguer-Murcia, Roberto Fernandez-Lafuente and Paulo Waldir Tardioli","doi":"10.1039/D3RE00420A","DOIUrl":null,"url":null,"abstract":"<p >A review of the literature covering research on the immobilization of lipases on hydrophobic supports was performed using systematic mapping (SM) concepts. This approach consists of a rigorous review of the methodology used to catalog evidence, to identify gaps at the frontier of knowledge, to identify unknown trends, and to list research groups. Our results show a wide variety of available lipases, including commercial, wild-type and recombinant strains. However, the most commonly used lipases are lipases from <em>Thermomyces lanuginosus</em> (TLL), <em>Candida rugosa</em> (CRL) or <em>Rhizomucor miehei</em> (RML) and lipase B from <em>Candida antarctica</em> (CALB). A wide variety of supports with different degrees of hydrophobicity were identified and the supports activated with a layer of octyl or octadecyl groups were the most commonly used. The advantages of lipase immobilization on these supports are discussed. Among them, the immobilization, purification, stabilization and hyperactivation of lipases in a single step stand out. Moreover, problems related to lipase immobilization by interfacial activation are highlighted (mainly enzyme release). Strategies to overcome these problems include immobilization on heterofunctional supports or intermolecular crosslinking of enzymes immobilized by physical and/or chemical agents. The possibility of increasing the capacity of supports by lipase multilayer immobilization is also discussed. Finally, the structure, distribution of the network and the frequency of co-occurrence between lipases and supports are elucidated to determine the possible hotspots and hitherto unexplored advances in knowledge.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2689-2702"},"PeriodicalIF":3.4000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/re/d3re00420a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/re/d3re00420a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A review of the literature covering research on the immobilization of lipases on hydrophobic supports was performed using systematic mapping (SM) concepts. This approach consists of a rigorous review of the methodology used to catalog evidence, to identify gaps at the frontier of knowledge, to identify unknown trends, and to list research groups. Our results show a wide variety of available lipases, including commercial, wild-type and recombinant strains. However, the most commonly used lipases are lipases from Thermomyces lanuginosus (TLL), Candida rugosa (CRL) or Rhizomucor miehei (RML) and lipase B from Candida antarctica (CALB). A wide variety of supports with different degrees of hydrophobicity were identified and the supports activated with a layer of octyl or octadecyl groups were the most commonly used. The advantages of lipase immobilization on these supports are discussed. Among them, the immobilization, purification, stabilization and hyperactivation of lipases in a single step stand out. Moreover, problems related to lipase immobilization by interfacial activation are highlighted (mainly enzyme release). Strategies to overcome these problems include immobilization on heterofunctional supports or intermolecular crosslinking of enzymes immobilized by physical and/or chemical agents. The possibility of increasing the capacity of supports by lipase multilayer immobilization is also discussed. Finally, the structure, distribution of the network and the frequency of co-occurrence between lipases and supports are elucidated to determine the possible hotspots and hitherto unexplored advances in knowledge.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.