U. Duru, P. Ikpeka, Chiziterem Ndukwe-Nwoke, A. Arinkoola, S. Onwukwe
{"title":"QUANTITATIVE RISK ASSESSMENT OF THE EFFECT OF SAND ON MULTIPHASE FLOW IN PIPELINE","authors":"U. Duru, P. Ikpeka, Chiziterem Ndukwe-Nwoke, A. Arinkoola, S. Onwukwe","doi":"10.17794/rgn.2022.4.4","DOIUrl":null,"url":null,"abstract":"The presence of sand particles flowing along with reservoir fluids in a pipeline increases the probability of pipeline failure. The risk of pipeline failure is either accentuated or abated by the flow conditions of the fluids in the pipeline. In this study, a quantitative risk analysis of the effect of sand on pipelines during multiphase flow, under the pipeline failure modes; sanding up, erosion, and encountering abnormal pressure gradient was conducted. Three piping components were considered: line pipe (nominal size 1.5 in [3.8 cm]), swing check valve (nominal size 12.007 in [30.5cm]) and 90 deg LR Elbow (nominal size 2.25 in [5.7cm]). Correlations that indicate the critical velocities and the critical sand concentrations above/below which these failures occur were employed and implemented in a Visual Basic program. The analysis was conducted at a temperature of 204 °C and pressure of 604 psi [4.2×106 Pa]. A probability distribution, simulating real-life scenario was developed using Monte Carlo simulation. This determines the probability of deriving critical sand concentration values that fall beyond the set statistical limits which indicates the probability of occurrence of the failure being investigated. For all three failures, the severity of occurrence (represented by CAPEX incurred in solving the failures) was multiplied with the probability of failure which gave rise to the risk indexes. Based on the histogram plot of average risk index and analysis, the study reveals that larger diameter components are prone to turbulence which lead to greater risk of erosion. The risk of abnormal pressure drop and sanding up were considerably lower than that for erosion (abrasion).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17794/rgn.2022.4.4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The presence of sand particles flowing along with reservoir fluids in a pipeline increases the probability of pipeline failure. The risk of pipeline failure is either accentuated or abated by the flow conditions of the fluids in the pipeline. In this study, a quantitative risk analysis of the effect of sand on pipelines during multiphase flow, under the pipeline failure modes; sanding up, erosion, and encountering abnormal pressure gradient was conducted. Three piping components were considered: line pipe (nominal size 1.5 in [3.8 cm]), swing check valve (nominal size 12.007 in [30.5cm]) and 90 deg LR Elbow (nominal size 2.25 in [5.7cm]). Correlations that indicate the critical velocities and the critical sand concentrations above/below which these failures occur were employed and implemented in a Visual Basic program. The analysis was conducted at a temperature of 204 °C and pressure of 604 psi [4.2×106 Pa]. A probability distribution, simulating real-life scenario was developed using Monte Carlo simulation. This determines the probability of deriving critical sand concentration values that fall beyond the set statistical limits which indicates the probability of occurrence of the failure being investigated. For all three failures, the severity of occurrence (represented by CAPEX incurred in solving the failures) was multiplied with the probability of failure which gave rise to the risk indexes. Based on the histogram plot of average risk index and analysis, the study reveals that larger diameter components are prone to turbulence which lead to greater risk of erosion. The risk of abnormal pressure drop and sanding up were considerably lower than that for erosion (abrasion).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.