{"title":"COMPARATIVE INVESTIGATION OF GLASS WASTE GRINDING IN VARIOUS MILLS","authors":"Ildikó Fóris, G. Mucsi","doi":"10.17794/rgn.2022.3.3","DOIUrl":null,"url":null,"abstract":"The present work deals with systematic grinding investigation and determination of grindability of container glass bottles. The systematic grinding tests were carried out in three different kinds of ball mills (a drum mill, a vibrating mill, and a planetary mill) with different energy intensities (low, medium, and high intensity) in dry conditions. In addition, the specific grinding work and specific surface area were determined in every case. The grindability test was performed by the Universal Hardgrove Mill, moreover, the Bond-Work Index was calculated from the Hardgrove Grindability Index. In this research work, the focus was on analysing the grindability of container glass bottles and the goal was energy-efficient milling of glass waste to produce glass foam powder for further utilization (for example glass foam) in a sustainable way. Based on the obtained results, it can be concluded that the optimal milling apparatus for container glass grinding is the drum mill. The reason why is that it has a low specific grinding work (151.52 kWh/t) in comparison with the other two types of mills (3488.37 kWh/t for the planetary mill and 1106.38 kWh/t for the vibrating mill) resulting in a relatively high specific surface area (11314 cm2/g). In the case of grinding industrial quantities of glass waste, the drum mill has a much higher capacity compared to the vibrating mill and the planetary mill.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17794/rgn.2022.3.3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present work deals with systematic grinding investigation and determination of grindability of container glass bottles. The systematic grinding tests were carried out in three different kinds of ball mills (a drum mill, a vibrating mill, and a planetary mill) with different energy intensities (low, medium, and high intensity) in dry conditions. In addition, the specific grinding work and specific surface area were determined in every case. The grindability test was performed by the Universal Hardgrove Mill, moreover, the Bond-Work Index was calculated from the Hardgrove Grindability Index. In this research work, the focus was on analysing the grindability of container glass bottles and the goal was energy-efficient milling of glass waste to produce glass foam powder for further utilization (for example glass foam) in a sustainable way. Based on the obtained results, it can be concluded that the optimal milling apparatus for container glass grinding is the drum mill. The reason why is that it has a low specific grinding work (151.52 kWh/t) in comparison with the other two types of mills (3488.37 kWh/t for the planetary mill and 1106.38 kWh/t for the vibrating mill) resulting in a relatively high specific surface area (11314 cm2/g). In the case of grinding industrial quantities of glass waste, the drum mill has a much higher capacity compared to the vibrating mill and the planetary mill.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.