COMPARATIVE INVESTIGATION OF GLASS WASTE GRINDING IN VARIOUS MILLS

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ildikó Fóris, G. Mucsi
{"title":"COMPARATIVE INVESTIGATION OF GLASS WASTE GRINDING IN VARIOUS MILLS","authors":"Ildikó Fóris, G. Mucsi","doi":"10.17794/rgn.2022.3.3","DOIUrl":null,"url":null,"abstract":"The present work deals with systematic grinding investigation and determination of grindability of container glass bottles. The systematic grinding tests were carried out in three different kinds of ball mills (a drum mill, a vibrating mill, and a planetary mill) with different energy intensities (low, medium, and high intensity) in dry conditions. In addition, the specific grinding work and specific surface area were determined in every case. The grindability test was performed by the Universal Hardgrove Mill, moreover, the Bond-Work Index was calculated from the Hardgrove Grindability Index. In this research work, the focus was on analysing the grindability of container glass bottles and the goal was energy-efficient milling of glass waste to produce glass foam powder for further utilization (for example glass foam) in a sustainable way. Based on the obtained results, it can be concluded that the optimal milling apparatus for container glass grinding is the drum mill. The reason why is that it has a low specific grinding work (151.52 kWh/t) in comparison with the other two types of mills (3488.37 kWh/t for the planetary mill and 1106.38 kWh/t for the vibrating mill) resulting in a relatively high specific surface area (11314 cm2/g). In the case of grinding industrial quantities of glass waste, the drum mill has a much higher capacity compared to the vibrating mill and the planetary mill.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17794/rgn.2022.3.3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present work deals with systematic grinding investigation and determination of grindability of container glass bottles. The systematic grinding tests were carried out in three different kinds of ball mills (a drum mill, a vibrating mill, and a planetary mill) with different energy intensities (low, medium, and high intensity) in dry conditions. In addition, the specific grinding work and specific surface area were determined in every case. The grindability test was performed by the Universal Hardgrove Mill, moreover, the Bond-Work Index was calculated from the Hardgrove Grindability Index. In this research work, the focus was on analysing the grindability of container glass bottles and the goal was energy-efficient milling of glass waste to produce glass foam powder for further utilization (for example glass foam) in a sustainable way. Based on the obtained results, it can be concluded that the optimal milling apparatus for container glass grinding is the drum mill. The reason why is that it has a low specific grinding work (151.52 kWh/t) in comparison with the other two types of mills (3488.37 kWh/t for the planetary mill and 1106.38 kWh/t for the vibrating mill) resulting in a relatively high specific surface area (11314 cm2/g). In the case of grinding industrial quantities of glass waste, the drum mill has a much higher capacity compared to the vibrating mill and the planetary mill.
不同厂家玻璃废料研磨的对比研究
本文对容器玻璃瓶的研磨性进行了系统的磨削研究和测定。在干燥条件下,采用三种不同能量强度(低、中、高强度)的球磨机(鼓式球磨机、振动球磨机和行星球磨机)进行了系统的磨矿试验。此外,还确定了每种情况下的比磨削功和比表面积。采用通用Hardgrove磨机对其进行可磨性试验,并根据Hardgrove可磨性指数计算Bond-Work指数。在这项研究工作中,重点是分析容器玻璃瓶的可研磨性,目标是节能粉碎玻璃废料,以可持续的方式生产玻璃泡沫粉,供进一步利用(例如玻璃泡沫)。根据所得结果,可以得出容器玻璃研磨的最佳研磨设备是滚筒磨。原因是与其他两种类型的磨机(行星磨机为3488.37 kWh/t,振动磨机为1106.38 kWh/t)相比,它具有较低的比磨功(151.52 kWh/t),从而产生相对较高的比表面积(11314 cm2/g)。在粉碎工业数量的玻璃废料的情况下,滚筒磨比振动磨和行星磨具有更高的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信