Development of a 3D numerical model for simulating a blast wave propagation system considering the position of the blasting hole and in-situ discontinuities
{"title":"Development of a 3D numerical model for simulating a blast wave propagation system considering the position of the blasting hole and in-situ discontinuities","authors":"M. Yari, Daniyal Ghadyani, S. Jamali","doi":"10.17794/rgn.2022.2.6","DOIUrl":null,"url":null,"abstract":"Blasting operations are one of the most important parts of geotechnical and mining projects. Most rocks naturally have a series of discontinuities that significantly affect their responses to blast waves. In this paper, the propagation of a blast wave in one intact rock and four rocks with different joint conditions are simulated by a 3-dimensional distinct element code. The results showed that the joint in the model acted as a wave barrier and passed part of the waves, absorbed a portion, and reflected the remaining part into the model. In other words, a discontinuity reduces the energy of the wave and causes more wave attenuation. In addition, a shorter distance between the joint and the hole causes slower wave propagation and greater damping. Moreover, the results showed that the smaller the angle between the discontinuity and axis of the blast holes, the more stress occurs in the rock bench.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17794/rgn.2022.2.6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Blasting operations are one of the most important parts of geotechnical and mining projects. Most rocks naturally have a series of discontinuities that significantly affect their responses to blast waves. In this paper, the propagation of a blast wave in one intact rock and four rocks with different joint conditions are simulated by a 3-dimensional distinct element code. The results showed that the joint in the model acted as a wave barrier and passed part of the waves, absorbed a portion, and reflected the remaining part into the model. In other words, a discontinuity reduces the energy of the wave and causes more wave attenuation. In addition, a shorter distance between the joint and the hole causes slower wave propagation and greater damping. Moreover, the results showed that the smaller the angle between the discontinuity and axis of the blast holes, the more stress occurs in the rock bench.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.