{"title":"Membrane Distillation for Water Recovery and Its Fouling Phenomena","authors":"Changyong Shi, Lyly Leow Hui Ting, O. B. Seng","doi":"10.22079/JMSR.2019.111501.1277","DOIUrl":null,"url":null,"abstract":"The total volume of water on Earth is circa 300 million cubic miles, with close to 98.0% being salt water and the remaining 2.0% fresh water. It has been increasingly more challenging to harvest fresh water from surface water, seawater and even from wastewater due to the combination of factors, viz. burgeoning population growth, rapid industrialization and climate change. Recently, membrane distillation (MD) emerges as a promising cost-effective thermal driven sustainable water recovery technology when integrated with renewable energy sources. However, one of the major challenges for MD is the membrane fouling, which has been gaining popularity in the recent literature, as well. The membrane fouling propensity for MD is very much depends on the type of feed water, suitability of membrane and the operating conditions. The objective of this review is to investigate the fouling phenomena of membrane distillation in wastewater treatment and desalination. The design of membrane and its system from the perspective of material and process design were discussed to provide an insight on the current and future advancement in MD technology for water recovery. Finally, the future trend of MD is projected based on the state of the art development of MD process.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"107-124"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2019.111501.1277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 33
Abstract
The total volume of water on Earth is circa 300 million cubic miles, with close to 98.0% being salt water and the remaining 2.0% fresh water. It has been increasingly more challenging to harvest fresh water from surface water, seawater and even from wastewater due to the combination of factors, viz. burgeoning population growth, rapid industrialization and climate change. Recently, membrane distillation (MD) emerges as a promising cost-effective thermal driven sustainable water recovery technology when integrated with renewable energy sources. However, one of the major challenges for MD is the membrane fouling, which has been gaining popularity in the recent literature, as well. The membrane fouling propensity for MD is very much depends on the type of feed water, suitability of membrane and the operating conditions. The objective of this review is to investigate the fouling phenomena of membrane distillation in wastewater treatment and desalination. The design of membrane and its system from the perspective of material and process design were discussed to provide an insight on the current and future advancement in MD technology for water recovery. Finally, the future trend of MD is projected based on the state of the art development of MD process.
期刊介绍:
The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.