The general implicit-block method with two-points and extra derivatives for solving fifth-order ordinary differential equations

Q4 Mathematics
Mohammed Yousif Turki, Shaymaa Y. Alku, M. Mechee
{"title":"The general implicit-block method with two-points and extra derivatives for solving fifth-order ordinary differential equations","authors":"Mohammed Yousif Turki, Shaymaa Y. Alku, M. Mechee","doi":"10.22075/IJNAA.2022.5650","DOIUrl":null,"url":null,"abstract":"In this work, a general implicit block method (GIBM) with two points for solving general fifth-order initial value problems (IVPs) has been derived. GIBM is proposed by adopting the basis functions of Hermite interpolating polynomials. GIBM is presented to be suitable with the numerical solutions of fifth-order IVPs. Hence, the derivation of GIBM has been introduced. Numerical implementations compared with the existing numerical GRKM method are used to prove the accuracy and efficiency of the proposed GIBM method. The impressive numerical results of the test problems using the proposed GIBM method agree well with the approximated solutions of them using the existing GRKM method.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"1081-1097"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2022.5650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, a general implicit block method (GIBM) with two points for solving general fifth-order initial value problems (IVPs) has been derived. GIBM is proposed by adopting the basis functions of Hermite interpolating polynomials. GIBM is presented to be suitable with the numerical solutions of fifth-order IVPs. Hence, the derivation of GIBM has been introduced. Numerical implementations compared with the existing numerical GRKM method are used to prove the accuracy and efficiency of the proposed GIBM method. The impressive numerical results of the test problems using the proposed GIBM method agree well with the approximated solutions of them using the existing GRKM method.
求解五阶常微分方程的一般两点加附加导数隐块法
本文给出了求解一般五阶初值问题的一般两点隐式块法(GIBM)。采用Hermite插值多项式的基函数提出了GIBM。证明了该方法适用于求解五阶ivp的数值解。因此,本文介绍了GIBM的推导过程。通过与现有数值GRKM方法的比较,验证了该方法的准确性和有效性。所提出的GIBM方法对试验问题的数值解与现有GRKM方法的近似解吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信