E-small essential submodules

Q4 Mathematics
M. F. Khalf, H. Abbas
{"title":"E-small essential submodules","authors":"M. F. Khalf, H. Abbas","doi":"10.22075/IJNAA.2022.5608","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring with identity, and (U_{R}) be an $R$-module, with (E = End(U_{R})). In this work we consider a generalization of class small essential submodules namely E-small essential submodules. Where the submodule $Q$ of (U_{R}) is said E-small essential if $Q$ (cap W = 0) , when W is a small submodule of (U_{R}), implies that (N_{S}left( W right) = 0), where (N_{S}left( W right) = left{ psi in E | Impsi subseteq W right}). The intersection ({overline{B}}_{R}(U)) of each submodule of (U_{R}) contained in (Soc(U_{R})). The ({overline{B}}_{R}(U)) is unique largest E-small essential submodule of (U_{R}), if (U_{R}) is cyclic. Also in this paper we study ({overline{B}}_{R}(U)) and ({overline{W}}_{E}left( U right)). The condition when ({overline{B}}_{R}(U)) is E-small essential, and (text{Tot}left( U,U right) = {overline{W}}_{E}left( U right) = J(E)) are given.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"881-887"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2022.5608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a commutative ring with identity, and (U_{R}) be an $R$-module, with (E = End(U_{R})). In this work we consider a generalization of class small essential submodules namely E-small essential submodules. Where the submodule $Q$ of (U_{R}) is said E-small essential if $Q$ (cap W = 0) , when W is a small submodule of (U_{R}), implies that (N_{S}left( W right) = 0), where (N_{S}left( W right) = left{ psi in E | Impsi subseteq W right}). The intersection ({overline{B}}_{R}(U)) of each submodule of (U_{R}) contained in (Soc(U_{R})). The ({overline{B}}_{R}(U)) is unique largest E-small essential submodule of (U_{R}), if (U_{R}) is cyclic. Also in this paper we study ({overline{B}}_{R}(U)) and ({overline{W}}_{E}left( U right)). The condition when ({overline{B}}_{R}(U)) is E-small essential, and (text{Tot}left( U,U right) = {overline{W}}_{E}left( U right) = J(E)) are given.
e小的基本子模块
设$R$是一个具有恒等的交换环,且(U_{R})是一个$R$-模,具有(E = End(U_{R}))。本文考虑一类小本质子模的推广,即e -小本质子模。其中(U_{R})的子模块$Q$表示E-小本质,如果$Q$ (cap W = 0),当W是(U_{R})的子模块时,意味着(N_{S}左(W右)= 0),其中(N_{S}左(W右)=左{psi in E | Impsi subseteq W右})。(Soc(U_{R}))中包含的(U_{R})各子模块的交集({overline{B}}_{R}(U))。如果(U_{R})是循环的,则({overline{B}}_{R}(U))是(U_{R})的唯一最大e -小本质子模。本文还研究了({overline{B}}_{R}(U))和({overline{W}}_{E}左(U右))。给出了({overline{B}}_{R}(U))为E小本质,(text{Tot}left(U,U右)= {overline{W}}_{E}left(U右)= J(E))的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信