On the maximum number of limit cycles of a planar differential system

Q4 Mathematics
Sana Karfes, E. Hadidi, M. Kerker
{"title":"On the maximum number of limit cycles of a planar differential system","authors":"Sana Karfes, E. Hadidi, M. Kerker","doi":"10.22075/IJNAA.2021.23049.2468","DOIUrl":null,"url":null,"abstract":"In this work, we are interested in the study of the limit cycles of a perturbed differential system in  (mathbb{R}^2), given as follows[left{begin{array}{l}dot{x}=y, \\dot{y}=-x-varepsilon (1+sin ^{m}(theta ))psi (x,y),%end{array}%right.]where (varepsilon) is small enough, (m) is a non-negative integer, (tan (theta )=y/x), and (psi (x,y)) is a real polynomial of degree (ngeq1). We use the averaging theory of first-order to provide an upper bound for the maximum number of limit cycles. In the end, we present some numerical examples to illustrate the theoretical results.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"1462-1478"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2021.23049.2468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we are interested in the study of the limit cycles of a perturbed differential system in  (mathbb{R}^2), given as follows[left{begin{array}{l}dot{x}=y, \dot{y}=-x-varepsilon (1+sin ^{m}(theta ))psi (x,y),%end{array}%right.]where (varepsilon) is small enough, (m) is a non-negative integer, (tan (theta )=y/x), and (psi (x,y)) is a real polynomial of degree (ngeq1). We use the averaging theory of first-order to provide an upper bound for the maximum number of limit cycles. In the end, we present some numerical examples to illustrate the theoretical results.
平面微分系统的最大极限环数
在这项工作中,我们对(mathbb{R}^2)中摄动微分系统的极限环的研究感兴趣,给出如下[left{begin{array}{l}dot{x}=y, \dot{y}=-x-varepsilon (1+sin ^{m}(θ))psi (x,y),%end{array}%right。],其中(varepsilon)足够小,(m)是非负整数,(tan (θ)=y/x), (psi (x,y))是次(ngeq1)的实多项式。利用一阶平均理论给出了极限环的最大数目的上界。最后,给出了一些数值算例来说明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信