Genetic Studies: The Linear Mixed Models in Genome-wide Association Studies

Q3 Computer Science
Gengxin Li, Hongjiang Zhu
{"title":"Genetic Studies: The Linear Mixed Models in Genome-wide Association Studies","authors":"Gengxin Li, Hongjiang Zhu","doi":"10.2174/1875036201307010027","DOIUrl":null,"url":null,"abstract":"With the availability of high-density genomic data containing millions of single nucleotide polymorphisms and tens or hundreds of thousands of individuals, genetic association study is likely to identify the variants contributing to complex traits in a genome-wide scale. However, genome-wide association studies are confounded by some spurious associations due to not properly interpreting sample structure (containing population structure, family structure and cryptic relatedness). The absence of complete genealogy of population in the genome-wide association studies model greatly motivates the development of new methods to correct the inflation of false positive. In this process, linear mixed model based approaches with the advantage of capturing multilevel relatedness have gained large ground. We summarize current literatures dealing with sample structure, and our review focuses on the following four areas: (i) The approaches handling population structure in genome-wide association studies; (ii) The linear mixed model based approaches in genome-wide association studies; (iii) The performance of linear mixed model based approaches in genome-wide association studies and (iv) The unsolved issues and future work of linear mixed model based approaches.","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":"7 1","pages":"27-33"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875036201307010027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 22

Abstract

With the availability of high-density genomic data containing millions of single nucleotide polymorphisms and tens or hundreds of thousands of individuals, genetic association study is likely to identify the variants contributing to complex traits in a genome-wide scale. However, genome-wide association studies are confounded by some spurious associations due to not properly interpreting sample structure (containing population structure, family structure and cryptic relatedness). The absence of complete genealogy of population in the genome-wide association studies model greatly motivates the development of new methods to correct the inflation of false positive. In this process, linear mixed model based approaches with the advantage of capturing multilevel relatedness have gained large ground. We summarize current literatures dealing with sample structure, and our review focuses on the following four areas: (i) The approaches handling population structure in genome-wide association studies; (ii) The linear mixed model based approaches in genome-wide association studies; (iii) The performance of linear mixed model based approaches in genome-wide association studies and (iv) The unsolved issues and future work of linear mixed model based approaches.
遗传研究:全基因组关联研究中的线性混合模型
随着包含数百万个单核苷酸多态性和数万或数十万个个体的高密度基因组数据的可用性,遗传关联研究有可能在全基因组范围内识别导致复杂性状的变异。然而,全基因组关联研究由于不能正确解释样本结构(包括种群结构、家族结构和隐性亲缘关系)而被一些虚假关联所混淆。全基因组关联研究模型中缺乏完整的群体谱系,这极大地推动了纠正假阳性膨胀的新方法的发展。在此过程中,基于线性混合模型的方法以其捕获多层次相关性的优点获得了广泛的应用。本文对目前研究样本结构的文献进行了总结,并着重从以下四个方面进行了综述:(1)全基因组关联研究中处理群体结构的方法;(ii)基于线性混合模型的全基因组关联研究方法;(iii)基于线性混合模型的方法在全基因组关联研究中的表现;(iv)基于线性混合模型的方法尚未解决的问题和未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Bioinformatics Journal
Open Bioinformatics Journal Computer Science-Computer Science (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
4
期刊介绍: The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信