Yeast Gene Function Prediction from Different Data Sources: An Empirical Comparison

Q3 Computer Science
Y. Liu
{"title":"Yeast Gene Function Prediction from Different Data Sources: An Empirical Comparison","authors":"Y. Liu","doi":"10.2174/1875036201105010069","DOIUrl":null,"url":null,"abstract":"Different data sources have been used to learn gene function. Whereas combining heterogeneous data sets to infer gene function has been widely studied, there is no empirical comparison to determine the relative effectiveness or usefulness of different types of data in terms of gene function prediction. In this paper, we report a comparative study of yeast gene function prediction using different data sources, namely microarray data, phylogenetic data, literature text data, and a combination of these three data sources. Our results showed that text data outperformed microarray data and phylo- genetic data in gene function prediction (p 0.05). The com- bined data led to decreased prediction performance relative to text data. In addition, we showed that feature selection did not improve the prediction performance of support vector machines.","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":"5 1","pages":"69-76"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875036201105010069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

Different data sources have been used to learn gene function. Whereas combining heterogeneous data sets to infer gene function has been widely studied, there is no empirical comparison to determine the relative effectiveness or usefulness of different types of data in terms of gene function prediction. In this paper, we report a comparative study of yeast gene function prediction using different data sources, namely microarray data, phylogenetic data, literature text data, and a combination of these three data sources. Our results showed that text data outperformed microarray data and phylo- genetic data in gene function prediction (p 0.05). The com- bined data led to decreased prediction performance relative to text data. In addition, we showed that feature selection did not improve the prediction performance of support vector machines.
不同数据来源的酵母基因功能预测:经验比较
不同的数据来源被用来研究基因功能。虽然结合异质数据集来推断基因功能已经得到了广泛的研究,但在基因功能预测方面,还没有经验比较来确定不同类型数据的相对有效性或有用性。在本文中,我们报告了酵母基因功能预测使用不同数据源的比较研究,即微阵列数据,系统发育数据,文献文本数据,以及这三种数据源的组合。我们的研究结果表明,文本数据在基因功能预测方面优于微阵列数据和进化遗传数据(p < 0.05)。与文本数据相比,合并后的数据导致预测性能下降。此外,我们发现特征选择并没有提高支持向量机的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Bioinformatics Journal
Open Bioinformatics Journal Computer Science-Computer Science (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
4
期刊介绍: The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信