{"title":"A Self-Assembled Non-Viral vector as Potential Platform for mRNA-Based Vaccines","authors":"S. Persano","doi":"10.21767/2172-0479.100119","DOIUrl":null,"url":null,"abstract":"Here, we show a universal anti-cancer vaccine, based on antigen-mRNA-loaded self-assembled polyplex nanocarrier. The establishment of antigen-specific T-cells, as consequence of the vaccination, performed following a subcutaneous route of administration, was confirmed by detection of IFN-γ/IL-2 producing T-cells in the spleen of the treated mice. Moreover, a high release of Th1-releated IgG isotypes (IgG2b and IgG2c) was observed, indicating a predominantly Th1 response. Finally, OVA-mRNA-based vaccine formulation has been employed for the treatment of melanoma lung metastasis of B16-OVA challenged mice, inducing a marked reduction of metastatic nodules up to 93%. Ascertained that any polypeptide-based antigen can be encoded as RNA, potentially our platform can represent a universal strategy suitable for the development of any mRNA-based vaccine.","PeriodicalId":89642,"journal":{"name":"Translational biomedicine","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21767/2172-0479.100119","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21767/2172-0479.100119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Here, we show a universal anti-cancer vaccine, based on antigen-mRNA-loaded self-assembled polyplex nanocarrier. The establishment of antigen-specific T-cells, as consequence of the vaccination, performed following a subcutaneous route of administration, was confirmed by detection of IFN-γ/IL-2 producing T-cells in the spleen of the treated mice. Moreover, a high release of Th1-releated IgG isotypes (IgG2b and IgG2c) was observed, indicating a predominantly Th1 response. Finally, OVA-mRNA-based vaccine formulation has been employed for the treatment of melanoma lung metastasis of B16-OVA challenged mice, inducing a marked reduction of metastatic nodules up to 93%. Ascertained that any polypeptide-based antigen can be encoded as RNA, potentially our platform can represent a universal strategy suitable for the development of any mRNA-based vaccine.