Generalized Beatty sequences and complementary triples

Q4 Mathematics
J. Allouche, F. Michel Dekking
{"title":"Generalized Beatty sequences and complementary triples","authors":"J. Allouche, F. Michel Dekking","doi":"10.2140/moscow.2019.8.325","DOIUrl":null,"url":null,"abstract":"A generalized Beatty sequence is a sequence $V$ defined by $V(n)=p\\lfloor{n\\alpha}\\rfloor+qn +r$, for $n=1,2,\\dots$, where $\\alpha$ is a real number, and $p,q,r$ are integers. These occur in several problems, as for instance in homomorphic embeddings of Sturmian languages in the integers. Our results are for the case that $\\alpha$ is the golden mean, but we show how some results generalise to arbitrary quadratic irrationals. We mainly consider the following question: For which sixtuples of integers $p,q,r,s,t,u$ are the two sequences $V=(p\\lfloor{n\\alpha}\\rfloor+qn +r)$ and $W=(s\\lfloor{n\\alpha}\\rfloor+tn +u)$ complementary sequences? \nWe also study complementary triples, i.e., three sequences $V_i=(p_i\\lfloor{n\\alpha}\\rfloor+q_in+r_i), \\:i=1,2,3$, with the property that the sets they determine are disjoint with union the positive integers.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.325","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

Abstract

A generalized Beatty sequence is a sequence $V$ defined by $V(n)=p\lfloor{n\alpha}\rfloor+qn +r$, for $n=1,2,\dots$, where $\alpha$ is a real number, and $p,q,r$ are integers. These occur in several problems, as for instance in homomorphic embeddings of Sturmian languages in the integers. Our results are for the case that $\alpha$ is the golden mean, but we show how some results generalise to arbitrary quadratic irrationals. We mainly consider the following question: For which sixtuples of integers $p,q,r,s,t,u$ are the two sequences $V=(p\lfloor{n\alpha}\rfloor+qn +r)$ and $W=(s\lfloor{n\alpha}\rfloor+tn +u)$ complementary sequences? We also study complementary triples, i.e., three sequences $V_i=(p_i\lfloor{n\alpha}\rfloor+q_in+r_i), \:i=1,2,3$, with the property that the sets they determine are disjoint with union the positive integers.
广义Beatty序列与互补三元组
广义Beatty序列是由$V(n)=p\lfloor{n\alpha}\rfloor+qn +r$定义的序列$V$,对于$n=1,2,\dots$,其中$\alpha$是实数,$p,q,r$是整数。这种情况出现在一些问题中,例如在整数中图尔图曼语言的同态嵌入。我们的结果是针对$\alpha$是黄金平均数的情况,但我们展示了一些结果如何推广到任意二次无理数。我们主要考虑以下问题:对于哪个整数的六元组$p,q,r,s,t,u$,两个序列$V=(p\lfloor{n\alpha}\rfloor+qn +r)$和$W=(s\lfloor{n\alpha}\rfloor+tn +u)$是互补序列?我们还研究了互补三元组,即三个序列$V_i=(p_i\lfloor{n\alpha}\rfloor+q_in+r_i), \:i=1,2,3$,它们所确定的集合是不相交且正整数并集的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信