Bifurcation theory for a class of second order differential equations

Pub Date : 2013-01-01 DOI:10.17077/ETD.QMLJMX3C
Alvaro Correa, Yi A. Li
{"title":"Bifurcation theory for a class of second order differential equations","authors":"Alvaro Correa, Yi A. Li","doi":"10.17077/ETD.QMLJMX3C","DOIUrl":null,"url":null,"abstract":"We consider the existence of positive solutions of the nonlinear two point boundary value problem u′′ + λf(u) = 0, u(−1) = u(1) = 0, where f(u) = u(u − a)(u− b)(u− c)(1−u), 0 < a < b < c < 1, as the parameter λ varies through positive values. Every solution u(x) is an even function, and when it exists, it is uniquely identified by α = u(0). We study how the number of solutions changes when the parameter varies, i.e. we will be focusing on the locations of bifurcation points. The authors P. Korman, Y. Li and T. Ouyang ( ”Computing the location and the direction of bifurcation”, Mathematical Research Letters, accepted ), prove that a necessary and sufficient condition for α to be a bifurcation point is G(α) ≡ F (α) ∫ α 0 f(α)− f(τ) [F (α)− F (τ)]3/2 dτ − 2 = 0, where F (α) = ∫ α 0 f(u) du. We will prove that G(α) has vertical asymptotes at α = b, α = 1 and at any point α ∈ (0, 1) for which ∫ α 0 f(u) du = 0. We will use the asymptotic behavior of G to estimate intervals where G(α) 6= 0, that is, intervals where there is no bifurcation point.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17077/ETD.QMLJMX3C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the existence of positive solutions of the nonlinear two point boundary value problem u′′ + λf(u) = 0, u(−1) = u(1) = 0, where f(u) = u(u − a)(u− b)(u− c)(1−u), 0 < a < b < c < 1, as the parameter λ varies through positive values. Every solution u(x) is an even function, and when it exists, it is uniquely identified by α = u(0). We study how the number of solutions changes when the parameter varies, i.e. we will be focusing on the locations of bifurcation points. The authors P. Korman, Y. Li and T. Ouyang ( ”Computing the location and the direction of bifurcation”, Mathematical Research Letters, accepted ), prove that a necessary and sufficient condition for α to be a bifurcation point is G(α) ≡ F (α) ∫ α 0 f(α)− f(τ) [F (α)− F (τ)]3/2 dτ − 2 = 0, where F (α) = ∫ α 0 f(u) du. We will prove that G(α) has vertical asymptotes at α = b, α = 1 and at any point α ∈ (0, 1) for which ∫ α 0 f(u) du = 0. We will use the asymptotic behavior of G to estimate intervals where G(α) 6= 0, that is, intervals where there is no bifurcation point.
分享
查看原文
一类二阶微分方程的分岔理论
考虑了非线性两点边值问题u ' + λf(u) = 0, u(−1)= u(1) = 0,其中f(u) = u(u−a)(u−b)(u−c)(1−u), 0 < a < b < c < 1,且参数λ随正数值变化时正解的存在性。u(x)的每一个解都是偶函数,当它存在时,它被α = u(0)唯一标识。我们研究当参数变化时解的数目是如何变化的,即我们将关注分岔点的位置。作者P. Korman, Y. Li和T. Ouyang(“计算分岔的位置和方向”,《数学研究通讯》,已接受)证明了α是分岔点的一个充分必要条件是G(α)≡F (α)∫α 0 F (α)−F (τ) [F (α)−F (τ)]3/2 dτ−2 = 0,其中F (α) =∫α 0 F (u) du。我们将证明G(α)在α = b, α = 1以及在任意点α∈(0,1)且∫α 0 f(u) du = 0处具有垂直渐近线。我们将利用G的渐近性质来估计G(α) 6= 0的区间,即不存在分岔点的区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信