{"title":"Bifurcation theory for a class of second order differential equations","authors":"Alvaro Correa, Yi A. Li","doi":"10.17077/ETD.QMLJMX3C","DOIUrl":null,"url":null,"abstract":"We consider the existence of positive solutions of the nonlinear two point boundary value problem u′′ + λf(u) = 0, u(−1) = u(1) = 0, where f(u) = u(u − a)(u− b)(u− c)(1−u), 0 < a < b < c < 1, as the parameter λ varies through positive values. Every solution u(x) is an even function, and when it exists, it is uniquely identified by α = u(0). We study how the number of solutions changes when the parameter varies, i.e. we will be focusing on the locations of bifurcation points. The authors P. Korman, Y. Li and T. Ouyang ( ”Computing the location and the direction of bifurcation”, Mathematical Research Letters, accepted ), prove that a necessary and sufficient condition for α to be a bifurcation point is G(α) ≡ F (α) ∫ α 0 f(α)− f(τ) [F (α)− F (τ)]3/2 dτ − 2 = 0, where F (α) = ∫ α 0 f(u) du. We will prove that G(α) has vertical asymptotes at α = b, α = 1 and at any point α ∈ (0, 1) for which ∫ α 0 f(u) du = 0. We will use the asymptotic behavior of G to estimate intervals where G(α) 6= 0, that is, intervals where there is no bifurcation point.","PeriodicalId":50398,"journal":{"name":"Houston Journal of Mathematics","volume":"39 1","pages":"231-245"},"PeriodicalIF":0.2000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Houston Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17077/ETD.QMLJMX3C","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the existence of positive solutions of the nonlinear two point boundary value problem u′′ + λf(u) = 0, u(−1) = u(1) = 0, where f(u) = u(u − a)(u− b)(u− c)(1−u), 0 < a < b < c < 1, as the parameter λ varies through positive values. Every solution u(x) is an even function, and when it exists, it is uniquely identified by α = u(0). We study how the number of solutions changes when the parameter varies, i.e. we will be focusing on the locations of bifurcation points. The authors P. Korman, Y. Li and T. Ouyang ( ”Computing the location and the direction of bifurcation”, Mathematical Research Letters, accepted ), prove that a necessary and sufficient condition for α to be a bifurcation point is G(α) ≡ F (α) ∫ α 0 f(α)− f(τ) [F (α)− F (τ)]3/2 dτ − 2 = 0, where F (α) = ∫ α 0 f(u) du. We will prove that G(α) has vertical asymptotes at α = b, α = 1 and at any point α ∈ (0, 1) for which ∫ α 0 f(u) du = 0. We will use the asymptotic behavior of G to estimate intervals where G(α) 6= 0, that is, intervals where there is no bifurcation point.
期刊介绍:
The Houston Journal of Mathematics appears quarterly and publishes original research papers on mathematical topics. It welcomes contributed papers that develop interesting, or important, new mathematical ideas and results or solve outstanding problems. All papers are refereed for correctness and suitability for publication.