Markov Clustering-Based Placement Algorithm for Hierarchical FPGAs*

IF 5.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dai Hui (戴晖), Zhou Qiang (周强), Bian Jinian (边计年)
{"title":"Markov Clustering-Based Placement Algorithm for Hierarchical FPGAs*","authors":"Dai Hui (戴晖),&nbsp;Zhou Qiang (周强),&nbsp;Bian Jinian (边计年)","doi":"10.1016/S1007-0214(11)70010-4","DOIUrl":null,"url":null,"abstract":"<div><p>Divide-and-conquer methods for FPGA<span><span> placement algorithms including partition-based and cluster-based algorithms have shown the importance of good quality-runtime trade-off. This paper describes a cluster-based FPGA placement algorithm targeted to a new commercial hierarchical FPGA device. The algorithm is based on a Markov clustering algorithm that defines a sequence of stochastic matrices operating on a generating matrix from the input FPGA circuit netlist. The core of the algorithm tightly couples a Markov clustering process with a multilevel placement process. Tests show its excellent adaptability to hierarchical FPGAs. The average wirelength results produced by the algorithm are 22.3% shorter than the results produced by the current hierarchical FPGA </span>placer.</span></p></div>","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2011-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1007-0214(11)70010-4","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007021411700104","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Divide-and-conquer methods for FPGA placement algorithms including partition-based and cluster-based algorithms have shown the importance of good quality-runtime trade-off. This paper describes a cluster-based FPGA placement algorithm targeted to a new commercial hierarchical FPGA device. The algorithm is based on a Markov clustering algorithm that defines a sequence of stochastic matrices operating on a generating matrix from the input FPGA circuit netlist. The core of the algorithm tightly couples a Markov clustering process with a multilevel placement process. Tests show its excellent adaptability to hierarchical FPGAs. The average wirelength results produced by the algorithm are 22.3% shorter than the results produced by the current hierarchical FPGA placer.

基于Markov聚类的分层FPGA布局算法
FPGA布局算法的分治方法,包括基于分区和基于集群的算法,已经表明了高质量运行时权衡的重要性。本文针对一种新的商用分层FPGA器件,描述了一种基于集群的FPGA布局算法。该算法基于马尔可夫聚类算法,该算法定义了对来自输入FPGA电路网表的生成矩阵进行操作的随机矩阵序列。该算法的核心将马尔可夫聚类过程与多级放置过程紧密耦合。测试表明,它对分层FPGA具有良好的适应性。该算法产生的平均线路长度结果比当前分层FPGA放置器产生的结果短22.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
0.00%
发文量
2340
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信