J. Gu, P. Zhong, Wenzhen Qin, Haoyang Liu, Lifei Dong, Yijun Yang
{"title":"Kinetic Models of Integrated Solidification and Cementation of Cement- formation Interface with New Method","authors":"J. Gu, P. Zhong, Wenzhen Qin, Haoyang Liu, Lifei Dong, Yijun Yang","doi":"10.2174/1874123101307010009","DOIUrl":null,"url":null,"abstract":"The isolation failure of cement-formation interface is an important and urgent problem in oil production, while an effective way to solve it is to realize the integrated solidification and cementation of cement-formation interface (ISC- CFI). In order to study the kinetics of ISCCFI with MTA (Mud Cake to Agglomerated Cake) method, the Diamond Dif- ferential Scanning Calorimetry Analyzer is adopted for experiments with dynamic method and isothermal method. The results show that there is a linear relationship between the solidification reaction temperature and the heating rate of ISC- CFI with MTA method. For the first exothermic peak, the initial temperature, peak tip temperature and final tem- perature are 53 °C, 69 °C and 83 °C respectively, and the apparent activation energy of solidification reaction is 44.39×10 -3 kJ·mol -1 , the natural logarithm of preexponential factor is 7.26, the solidification reaction order is 0.88. For the second exothermic peak, the initial temperature, peak tip temperature and final temperature are 83 °C, 92 °C and 114 °C respectively, and the apparent activation energy of solidification reaction is 99.14×10 -3 kJ·mol -1 , the natural logarithm of preexponential factor is 24.77, the solidification reaction order is 0.94. The maximum solidification reac- tion rates at 50 °C, 75 °C and 90 °C are 0.09×10 -3 s -1 , 0.27×10 -3 s -1 and 0.51×10 -3 s -1 respectively. The kinetic models of ISCCFI with MTA method under different temperatures are established. It provides a theoretical and technical support for the isolation improvement of cement-formation interface.","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"191 1","pages":"9-17"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current chemical genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874123101307010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The isolation failure of cement-formation interface is an important and urgent problem in oil production, while an effective way to solve it is to realize the integrated solidification and cementation of cement-formation interface (ISC- CFI). In order to study the kinetics of ISCCFI with MTA (Mud Cake to Agglomerated Cake) method, the Diamond Dif- ferential Scanning Calorimetry Analyzer is adopted for experiments with dynamic method and isothermal method. The results show that there is a linear relationship between the solidification reaction temperature and the heating rate of ISC- CFI with MTA method. For the first exothermic peak, the initial temperature, peak tip temperature and final tem- perature are 53 °C, 69 °C and 83 °C respectively, and the apparent activation energy of solidification reaction is 44.39×10 -3 kJ·mol -1 , the natural logarithm of preexponential factor is 7.26, the solidification reaction order is 0.88. For the second exothermic peak, the initial temperature, peak tip temperature and final temperature are 83 °C, 92 °C and 114 °C respectively, and the apparent activation energy of solidification reaction is 99.14×10 -3 kJ·mol -1 , the natural logarithm of preexponential factor is 24.77, the solidification reaction order is 0.94. The maximum solidification reac- tion rates at 50 °C, 75 °C and 90 °C are 0.09×10 -3 s -1 , 0.27×10 -3 s -1 and 0.51×10 -3 s -1 respectively. The kinetic models of ISCCFI with MTA method under different temperatures are established. It provides a theoretical and technical support for the isolation improvement of cement-formation interface.