A Super Wideband (26-70 GHz) Microstrip Patch Antenna for 5G Mobile Communication Applications

Q3 Physics and Astronomy
Heidi M. Mohammed, W. Ali, D. Mohamed
{"title":"A Super Wideband (26-70 GHz) Microstrip Patch Antenna for 5G Mobile Communication Applications","authors":"Heidi M. Mohammed, W. Ali, D. Mohamed","doi":"10.21272/jnep.15(3).03013","DOIUrl":null,"url":null,"abstract":"In this paper, a novel wide band monopole antenna is designed to operate at the millimetric wave (mmW) frequency band with impedance bandwidth of 26-70 GHz for 5G wireless communication applications. First of all a conventional antenna is designed on full ground then it designed on partial ground with size 5mm x 10mm but both designs didn’t achieve bandwidth of 50 GHz-55 GHz, The conventional antenna is a simple rectangular patch antenna with compact size 5 mm  6.5 mm. In order to generate the wideband width of 26-70 GHz a proposed antenna is designed. The design composed of rectangular patch antenna with edge-cut technique (making slots at the corner of the patch) and introduced on partial ground plane for an improved impedance matching. The suggested microstrip antenna (proposed antenna) has been designed and examined on Rogers RT5880 substrate with dimensions 10 mm  10 mm with dielectric constant 2.2, loss tangent 0.0009 and thickness of 1.57 mm using computer simulation tool (CST) software 2019. The results reveal that the antenna shows a return loss under – 10 dB over a range from 26-70 GHz and resonated at multiple frequencies 29 GHz, 32.8 GHz, 42 GHz, 47 GHz, 56.6 GHz, and 66 GHz. The gain varies from 6 dBi to 11.9 dBi with maximum obtained value at the frequency of 70 GHz, the antenna exhibits a broadside radiation pattern at both resonant frequencies 32.8 GHz and 56.6 GHz and realized gain are 7.24 dBi and 8.72 dBi at both frequencies respectively therefore the simulated outcomes of return loss, gain , radiation pattern and realized gain show the ability of the super wideband antenna to suit 5G mmW applications.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(3).03013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel wide band monopole antenna is designed to operate at the millimetric wave (mmW) frequency band with impedance bandwidth of 26-70 GHz for 5G wireless communication applications. First of all a conventional antenna is designed on full ground then it designed on partial ground with size 5mm x 10mm but both designs didn’t achieve bandwidth of 50 GHz-55 GHz, The conventional antenna is a simple rectangular patch antenna with compact size 5 mm  6.5 mm. In order to generate the wideband width of 26-70 GHz a proposed antenna is designed. The design composed of rectangular patch antenna with edge-cut technique (making slots at the corner of the patch) and introduced on partial ground plane for an improved impedance matching. The suggested microstrip antenna (proposed antenna) has been designed and examined on Rogers RT5880 substrate with dimensions 10 mm  10 mm with dielectric constant 2.2, loss tangent 0.0009 and thickness of 1.57 mm using computer simulation tool (CST) software 2019. The results reveal that the antenna shows a return loss under – 10 dB over a range from 26-70 GHz and resonated at multiple frequencies 29 GHz, 32.8 GHz, 42 GHz, 47 GHz, 56.6 GHz, and 66 GHz. The gain varies from 6 dBi to 11.9 dBi with maximum obtained value at the frequency of 70 GHz, the antenna exhibits a broadside radiation pattern at both resonant frequencies 32.8 GHz and 56.6 GHz and realized gain are 7.24 dBi and 8.72 dBi at both frequencies respectively therefore the simulated outcomes of return loss, gain , radiation pattern and realized gain show the ability of the super wideband antenna to suit 5G mmW applications.
用于5G移动通信应用的超宽带(26-70 GHz)微带贴片天线
本文设计了一种新型宽带单极天线,工作在毫米波(mmW)频段,阻抗带宽为26-70 GHz,用于5G无线通信应用。传统天线首先在全地面上设计,然后在部分地面上设计,尺寸为5mm x 10mm,但两种设计都没有达到50 GHz-55 GHz的带宽,传统天线是一个简单的矩形贴片天线,紧凑尺寸为5mm6.5 mm。为了产生26 ~ 70ghz的宽带宽度,设计了一种新型天线。该设计由矩形贴片天线组成,采用边缘切割技术(在贴片的角上开槽),并在部分地平面上引入,以改善阻抗匹配。采用计算机仿真工具(CST)软件2019,在尺寸为10 mm10 mm、介电常数为2.2、损耗正切为0.0009、厚度为1.57 mm的Rogers RT5880衬底上设计并测试了所建议的微带天线(拟议天线)。结果表明,该天线在26-70 GHz范围内回波损耗低于- 10 dB,可在29 GHz、32.8 GHz、42 GHz、47 GHz、56.6 GHz和66 GHz多个频率下谐振。增益范围为6dbi ~ 11.9 dBi,在70 GHz频率处获得最大值,天线在32.8 GHz和56.6 GHz谐振频率处呈现宽频辐射方向图,实现增益分别为7.24 dBi和8.72 dBi,因此回波损耗、增益、辐射方向图和实现增益的模拟结果表明,该超宽带天线能够适应5G毫米波应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nano-and electronic Physics
Journal of Nano-and electronic Physics Materials Science-Materials Science (all)
CiteScore
1.40
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信