A. Es-saleh, M. Bendaoued, S. Lakrit, Sudipta Das, M. Atounti, A. Faize
{"title":"A Novel Fractal Patch Antenna Using Defected Ground Structure (DGS) with High Isolation for 5G Applications","authors":"A. Es-saleh, M. Bendaoued, S. Lakrit, Sudipta Das, M. Atounti, A. Faize","doi":"10.21272/jnep.15(3).03012","DOIUrl":null,"url":null,"abstract":"This paper presents a novel compact circular shaped fractal monopole patch antenna (FMPA) with de-fected ground structure (DGS). The suggested fractal geometry has been created by using an iterated function system (IFS). The primary aim behind the inclusion of this fractal geometry is used to achieve miniaturization and wideband performance. The complete geometry of the prescribed FMPA for 5G applications is constructed by incorporating fractals with square and star with eight segments; in each segment we create a square with a rotation of 45° from one segment to another. The dimension of proposed fractal geometry is 14 6 mm 2 . The bottom plane of the antenna consists of defected ground structures (DGS) to acquire better isolation and miniaturization. The proposed structure provides a good performance metrics such as gain, and reflection coefficient. The substrate used in this work is Rogers RO4003C, which has a dielectric constant of 3.55, a high of 0.2 mm, and loss tangent of 0.025. Computer Simulation Technology-Microwave Studio (CST) is used to evaluate this antenna. The suggested antenna operates at 26 GHz with an impedance bandwidth of 0.357 GHz along with maximum reflection coefficient of – 24.426 dB. The prescribed antenna attains a peak gain of 3.83 dB, maximum radiation efficiency of 95.78 % and desired radiation patterns by maintaining its compact size.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(3).03012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel compact circular shaped fractal monopole patch antenna (FMPA) with de-fected ground structure (DGS). The suggested fractal geometry has been created by using an iterated function system (IFS). The primary aim behind the inclusion of this fractal geometry is used to achieve miniaturization and wideband performance. The complete geometry of the prescribed FMPA for 5G applications is constructed by incorporating fractals with square and star with eight segments; in each segment we create a square with a rotation of 45° from one segment to another. The dimension of proposed fractal geometry is 14 6 mm 2 . The bottom plane of the antenna consists of defected ground structures (DGS) to acquire better isolation and miniaturization. The proposed structure provides a good performance metrics such as gain, and reflection coefficient. The substrate used in this work is Rogers RO4003C, which has a dielectric constant of 3.55, a high of 0.2 mm, and loss tangent of 0.025. Computer Simulation Technology-Microwave Studio (CST) is used to evaluate this antenna. The suggested antenna operates at 26 GHz with an impedance bandwidth of 0.357 GHz along with maximum reflection coefficient of – 24.426 dB. The prescribed antenna attains a peak gain of 3.83 dB, maximum radiation efficiency of 95.78 % and desired radiation patterns by maintaining its compact size.