Ensemble Approach for Capacitance Prediction of Heteroatom Doped Carbon Based Electrode Materials

Q3 Physics and Astronomy
Richa Dubey, Velmathi Guruviah, Ravi Prakash Dwivedi
{"title":"Ensemble Approach for Capacitance Prediction of Heteroatom Doped Carbon Based Electrode Materials","authors":"Richa Dubey, Velmathi Guruviah, Ravi Prakash Dwivedi","doi":"10.21272/jnep.15(3).03011","DOIUrl":null,"url":null,"abstract":"An ensemble approach-based machine learning modeling is used in the current study for unveiling the effect of various electrode parameters on the electrochemical performance of hetero-atom doped nanocarbons. This is achieved using three meta-classifiers in combination with traditional Multi-Layer Perceptron and Random Forest models. The three meta-classifiers used are namely (i) bagging, (ii) classification via regression (CVR) and (iii) multi class classifier (MCC). Amongst these three models, bagging and classification via regression provided greater accuracy in terms of correctly classified instances (%) and area under region of convergence values. The designed models are used to predict class of specific capacitance values. 94.5 % of the considered dataset is classified correctly proving a better accuracy of the designed models. Lowest root mean square value of 0.1787 was obtained for RF model. Compared to the models defined in the literature, the suggested models in this work provide best fit of the experiment and predicted values with highest accuracy and lowest error performance values. The lowest error value for RF and MLP models are 0.18 and 0.19 respectively.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(3).03011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

An ensemble approach-based machine learning modeling is used in the current study for unveiling the effect of various electrode parameters on the electrochemical performance of hetero-atom doped nanocarbons. This is achieved using three meta-classifiers in combination with traditional Multi-Layer Perceptron and Random Forest models. The three meta-classifiers used are namely (i) bagging, (ii) classification via regression (CVR) and (iii) multi class classifier (MCC). Amongst these three models, bagging and classification via regression provided greater accuracy in terms of correctly classified instances (%) and area under region of convergence values. The designed models are used to predict class of specific capacitance values. 94.5 % of the considered dataset is classified correctly proving a better accuracy of the designed models. Lowest root mean square value of 0.1787 was obtained for RF model. Compared to the models defined in the literature, the suggested models in this work provide best fit of the experiment and predicted values with highest accuracy and lowest error performance values. The lowest error value for RF and MLP models are 0.18 and 0.19 respectively.
杂原子掺杂碳基电极材料电容预测的系综方法
本研究采用基于集成方法的机器学习建模,揭示了不同电极参数对杂原子掺杂纳米碳电化学性能的影响。这是使用三个元分类器结合传统的多层感知器和随机森林模型来实现的。使用的三个元分类器分别是:(i)套袋,(ii)通过回归分类(CVR)和(iii)多类分类器(MCC)。在这三种模型中,套袋和回归分类在正确分类的实例(%)和收敛值区域下的面积方面提供了更高的准确性。所设计的模型用于预测一类比电容值。所考虑的数据集的94.5%被正确分类,证明设计的模型具有更好的准确性。RF模型的均方根最小值为0.1787。与文献中定义的模型相比,本文提出的模型以最高的精度和最低的误差性能值提供了实验和预测值的最佳拟合。RF和MLP模型的最小误差值分别为0.18和0.19。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nano-and electronic Physics
Journal of Nano-and electronic Physics Materials Science-Materials Science (all)
CiteScore
1.40
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信