Fault Analysis on AES: A Property-Based Verification Perspective

IF 5.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaojie Dai;Xingxin Wang;Xue Qu;Baolei Mao;Wei Hu
{"title":"Fault Analysis on AES: A Property-Based Verification Perspective","authors":"Xiaojie Dai;Xingxin Wang;Xue Qu;Baolei Mao;Wei Hu","doi":"10.26599/TST.2023.9010035","DOIUrl":null,"url":null,"abstract":"Fault analysis is a frequently used side-channel attack for cryptanalysis. However, existing fault attack methods usually involve complex fault fusion analysis or computation-intensive statistical analysis of massive fault traces. In this work, we take a property-based formal verification approach to fault analysis. We derive fine-grained formal models for automatic fault propagation and fusion, which establish a mathematical foundation for precise measurement and formal reasoning of fault effects. We extract the correlations in fault effects in order to create properties for fault verification. We further propose a method for key recovery, by formally checking when the extracted properties can be satisfied with partial keys as the search variables. Experimental results using both unprotected and masked advanced encryption standard (AES) implementations show that our method has a key search complexity of 2\n<sup>16</sup>\n, which only requires two correct and faulty ciphertext pairs to determine the secret key, and does not assume knowledge about fault location or pattern.","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"29 2","pages":"576-588"},"PeriodicalIF":5.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10258149/10258165.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10258165/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Fault analysis is a frequently used side-channel attack for cryptanalysis. However, existing fault attack methods usually involve complex fault fusion analysis or computation-intensive statistical analysis of massive fault traces. In this work, we take a property-based formal verification approach to fault analysis. We derive fine-grained formal models for automatic fault propagation and fusion, which establish a mathematical foundation for precise measurement and formal reasoning of fault effects. We extract the correlations in fault effects in order to create properties for fault verification. We further propose a method for key recovery, by formally checking when the extracted properties can be satisfied with partial keys as the search variables. Experimental results using both unprotected and masked advanced encryption standard (AES) implementations show that our method has a key search complexity of 2 16 , which only requires two correct and faulty ciphertext pairs to determine the secret key, and does not assume knowledge about fault location or pattern.
AES的故障分析:基于属性的验证视角
故障分析是密码分析中经常使用的侧信道攻击。然而,现有的故障攻击方法通常涉及复杂的故障融合分析或大规模故障痕迹的计算密集型统计分析。在这项工作中,我们采用了一种基于属性的形式化验证方法来进行故障分析。我们推导了用于自动故障传播和融合的细粒度形式化模型,为故障影响的精确测量和形式化推理奠定了数学基础。我们提取故障效应中的相关性,以便创建用于故障验证的属性。我们进一步提出了一种密钥恢复方法,通过形式化检查何时可以用部分密钥作为搜索变量来满足提取的属性。使用未保护和屏蔽的高级加密标准(AES)实现的实验结果表明,我们的方法具有216的密钥搜索复杂度,只需要两个正确和错误的密文对来确定密钥,并且不假设知道故障位置或模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
0.00%
发文量
2340
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信