{"title":"Evolutionary Multi-Tasking Optimization for High-Efficiency Time Series Data Clustering","authors":"Rui Wang;Wenhua Li;Kaili Shen;Tao Zhang;Xiangke Liao","doi":"10.26599/TST.2023.9010036","DOIUrl":null,"url":null,"abstract":"Time series clustering is a challenging problem due to the large-volume, high-dimensional, and warping characteristics of time series data. Traditional clustering methods often use a single criterion or distance measure, which may not capture all the features of the data. This paper proposes a novel method for time series clustering based on evolutionary multi-tasking optimization, termed i-MFEA, which uses an improved multifactorial evolutionary algorithm to optimize multiple clustering tasks simultaneously, each with a different validity index or distance measure. Therefore, i-MFEA can produce diverse and robust clustering solutions that satisfy various preferences of decision-makers. Experiments on two artificial datasets show that i-MFEA outperforms single-objective evolutionary algorithms and traditional clustering methods in terms of convergence speed and clustering quality. The paper also discusses how i-MFEA can address two long-standing issues in time series clustering: the choice of appropriate similarity measure and the number of clusters.","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"29 2","pages":"343-355"},"PeriodicalIF":5.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10258149/10258256.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10258256/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Time series clustering is a challenging problem due to the large-volume, high-dimensional, and warping characteristics of time series data. Traditional clustering methods often use a single criterion or distance measure, which may not capture all the features of the data. This paper proposes a novel method for time series clustering based on evolutionary multi-tasking optimization, termed i-MFEA, which uses an improved multifactorial evolutionary algorithm to optimize multiple clustering tasks simultaneously, each with a different validity index or distance measure. Therefore, i-MFEA can produce diverse and robust clustering solutions that satisfy various preferences of decision-makers. Experiments on two artificial datasets show that i-MFEA outperforms single-objective evolutionary algorithms and traditional clustering methods in terms of convergence speed and clustering quality. The paper also discusses how i-MFEA can address two long-standing issues in time series clustering: the choice of appropriate similarity measure and the number of clusters.