Evolutionary Multi-Tasking Optimization for High-Efficiency Time Series Data Clustering

IF 5.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Rui Wang;Wenhua Li;Kaili Shen;Tao Zhang;Xiangke Liao
{"title":"Evolutionary Multi-Tasking Optimization for High-Efficiency Time Series Data Clustering","authors":"Rui Wang;Wenhua Li;Kaili Shen;Tao Zhang;Xiangke Liao","doi":"10.26599/TST.2023.9010036","DOIUrl":null,"url":null,"abstract":"Time series clustering is a challenging problem due to the large-volume, high-dimensional, and warping characteristics of time series data. Traditional clustering methods often use a single criterion or distance measure, which may not capture all the features of the data. This paper proposes a novel method for time series clustering based on evolutionary multi-tasking optimization, termed i-MFEA, which uses an improved multifactorial evolutionary algorithm to optimize multiple clustering tasks simultaneously, each with a different validity index or distance measure. Therefore, i-MFEA can produce diverse and robust clustering solutions that satisfy various preferences of decision-makers. Experiments on two artificial datasets show that i-MFEA outperforms single-objective evolutionary algorithms and traditional clustering methods in terms of convergence speed and clustering quality. The paper also discusses how i-MFEA can address two long-standing issues in time series clustering: the choice of appropriate similarity measure and the number of clusters.","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"29 2","pages":"343-355"},"PeriodicalIF":5.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10258149/10258256.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10258256/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Time series clustering is a challenging problem due to the large-volume, high-dimensional, and warping characteristics of time series data. Traditional clustering methods often use a single criterion or distance measure, which may not capture all the features of the data. This paper proposes a novel method for time series clustering based on evolutionary multi-tasking optimization, termed i-MFEA, which uses an improved multifactorial evolutionary algorithm to optimize multiple clustering tasks simultaneously, each with a different validity index or distance measure. Therefore, i-MFEA can produce diverse and robust clustering solutions that satisfy various preferences of decision-makers. Experiments on two artificial datasets show that i-MFEA outperforms single-objective evolutionary algorithms and traditional clustering methods in terms of convergence speed and clustering quality. The paper also discusses how i-MFEA can address two long-standing issues in time series clustering: the choice of appropriate similarity measure and the number of clusters.
高效时间序列数据聚类的进化多任务优化
由于时间序列数据的大容量、高维和扭曲特性,时间序列聚类是一个具有挑战性的问题。传统的聚类方法通常使用单一的标准或距离度量,这可能无法捕获数据的所有特征。本文提出了一种基于进化多任务优化的时间序列聚类新方法,称为i-MFEA,该方法使用改进的多因素进化算法同时优化多个聚类任务,每个任务具有不同的有效性指数或距离测度。因此,i-MFEA可以产生多样化和稳健的聚类解决方案,满足决策者的各种偏好。在两个人工数据集上的实验表明,i-MFEA在收敛速度和聚类质量方面优于单目标进化算法和传统聚类方法。本文还讨论了i-MFEA如何解决时间序列聚类中两个长期存在的问题:适当的相似性度量的选择和聚类的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
0.00%
发文量
2340
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信