Performance of Text-Independent Automatic Speaker Recognition on a Multicore System

IF 5.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Rand Kouatly;Talha Ali Khan
{"title":"Performance of Text-Independent Automatic Speaker Recognition on a Multicore System","authors":"Rand Kouatly;Talha Ali Khan","doi":"10.26599/TST.2023.9010018","DOIUrl":null,"url":null,"abstract":"This paper studies a high-speed text-independent Automatic Speaker Recognition (ASR) algorithm based on a multicore system's Gaussian Mixture Model (GMM). The high speech is achieved using parallel implementation of the feature's extraction and aggregation methods during training and testing procedures. Shared memory parallel programming techniques using both OpenMP and PThreads libraries are developed to accelerate the code and improve the performance of the ASR algorithm. The experimental results show speed-up improvements of around 3.2 on a personal laptop with Intel i5-6300HQ (2.3 GHz, four cores without hyper-threading, and 8 GB of RAM). In addition, a remarkable 100% speaker recognition accuracy is achieved.","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"29 2","pages":"447-456"},"PeriodicalIF":5.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10258149/10258152.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10258152/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a high-speed text-independent Automatic Speaker Recognition (ASR) algorithm based on a multicore system's Gaussian Mixture Model (GMM). The high speech is achieved using parallel implementation of the feature's extraction and aggregation methods during training and testing procedures. Shared memory parallel programming techniques using both OpenMP and PThreads libraries are developed to accelerate the code and improve the performance of the ASR algorithm. The experimental results show speed-up improvements of around 3.2 on a personal laptop with Intel i5-6300HQ (2.3 GHz, four cores without hyper-threading, and 8 GB of RAM). In addition, a remarkable 100% speaker recognition accuracy is achieved.
多核系统中与文本无关的说话人自动识别性能
本文研究了一种基于多核系统高斯混合模型(GMM)的高速文本无关自动说话人识别(ASR)算法。在训练和测试过程中,使用特征提取和聚合方法的并行实现来实现高语音。开发了同时使用OpenMP和PThreads库的共享内存并行编程技术,以加速代码并提高ASR算法的性能。实验结果显示,在配备英特尔i5-6300HQ的个人笔记本电脑上(2.3 GHz,四核无超线程,8GB RAM),速度提高了约3.2。此外,实现了显著的100%说话人识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
0.00%
发文量
2340
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信