Incremental Maintenance of Maximal Bicliques in a Dynamic Bipartite Graph

Apurba Das;Srikanta Tirthapura
{"title":"Incremental Maintenance of Maximal Bicliques in a Dynamic Bipartite Graph","authors":"Apurba Das;Srikanta Tirthapura","doi":"10.1109/TMSCS.2018.2802920","DOIUrl":null,"url":null,"abstract":"We consider incremental maintenance of maximal bicliques from a dynamic bipartite graph that changes over time due to the addition of edges. When new edges are added to the graph, we seek to enumerate the change in the set of maximal bicliques, without enumerating the set of maximal bicliques that remain unaffected. The challenge in an efficient algorithm is to enumerate the change without explicitly enumerating the set of all maximal bicliques. In this work, we present (1) Near-tight bounds on the magnitude of change in the set of maximal bicliques of a graph, due to a change in the edge set, and an (2) Incremental algorithm for enumerating the change in the set of maximal bicliques. For the case when a constant number of edges are added to the graph, our algorithm is “change-sensitive”, i.e., its time complexity is proportional to the magnitude of change in the set of maximal bicliques. To our knowledge, this is the first incremental algorithm for enumerating maximal bicliques in a dynamic graph, with a provable performance guarantee. Our algorithm is easy to implement, and experimental results show that its performance exceeds that of baseline implementations by orders of magnitude substructures.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"4 3","pages":"231-242"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2018.2802920","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8283558/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We consider incremental maintenance of maximal bicliques from a dynamic bipartite graph that changes over time due to the addition of edges. When new edges are added to the graph, we seek to enumerate the change in the set of maximal bicliques, without enumerating the set of maximal bicliques that remain unaffected. The challenge in an efficient algorithm is to enumerate the change without explicitly enumerating the set of all maximal bicliques. In this work, we present (1) Near-tight bounds on the magnitude of change in the set of maximal bicliques of a graph, due to a change in the edge set, and an (2) Incremental algorithm for enumerating the change in the set of maximal bicliques. For the case when a constant number of edges are added to the graph, our algorithm is “change-sensitive”, i.e., its time complexity is proportional to the magnitude of change in the set of maximal bicliques. To our knowledge, this is the first incremental algorithm for enumerating maximal bicliques in a dynamic graph, with a provable performance guarantee. Our algorithm is easy to implement, and experimental results show that its performance exceeds that of baseline implementations by orders of magnitude substructures.
动态二分图中最大二元组的增量维护
我们考虑了动态二分图中最大二分图的增量维护,该图由于边的添加而随时间变化。当新的边被添加到图中时,我们试图枚举最大二重集的变化,而不枚举不受影响的最大二重集。有效算法中的挑战是在不显式枚举所有最大二进制的集合的情况下枚举更改。在这项工作中,我们提出了(1)由于边集的变化,图的最大二重集的变化幅度的近紧界,以及(2)枚举最大二重集变化的增量算法。对于向图中添加恒定数量的边的情况,我们的算法是“变化敏感的”,即其时间复杂度与最大双解集中的变化幅度成比例。据我们所知,这是第一个在动态图中枚举最大二进制的增量算法,具有可证明的性能保证。我们的算法易于实现,实验结果表明,它的性能比基线实现高出几个数量级的子结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信