{"title":"Coronavirus pandemic analysis through tripartite graph clustering in online social networks","authors":"Xueting Liao;Danyang Zheng;Xiaojun Cao","doi":"10.26599/BDMA.2021.9020010","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has hit the world hard. The reaction to the pandemic related issues has been pouring into social platforms, such as Twitter. Many public officials and governments use Twitter to make policy announcements. People keep close track of the related information and express their concerns about the policies on Twitter. It is beneficial yet challenging to derive important information or knowledge out of such Twitter data. In this paper, we propose a Tripartite Graph Clustering for Pandemic Data Analysis (TGC-PDA) framework that builds on the proposed models and analysis: (1) tripartite graph representation, (2) non-negative matrix factorization with regularization, and (3) sentiment analysis. We collect the tweets containing a set of keywords related to coronavirus pandemic as the ground truth data. Our framework can detect the communities of Twitter users and analyze the topics that are discussed in the communities. The extensive experiments show that our TGC-PDA framework can effectively and efficiently identify the topics and correlations within the Twitter data for monitoring and understanding public opinions, which would provide policy makers useful information and statistics for decision making.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"4 4","pages":"242-251"},"PeriodicalIF":7.7000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9523493/09523498.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9523498/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 11
Abstract
The COVID-19 pandemic has hit the world hard. The reaction to the pandemic related issues has been pouring into social platforms, such as Twitter. Many public officials and governments use Twitter to make policy announcements. People keep close track of the related information and express their concerns about the policies on Twitter. It is beneficial yet challenging to derive important information or knowledge out of such Twitter data. In this paper, we propose a Tripartite Graph Clustering for Pandemic Data Analysis (TGC-PDA) framework that builds on the proposed models and analysis: (1) tripartite graph representation, (2) non-negative matrix factorization with regularization, and (3) sentiment analysis. We collect the tweets containing a set of keywords related to coronavirus pandemic as the ground truth data. Our framework can detect the communities of Twitter users and analyze the topics that are discussed in the communities. The extensive experiments show that our TGC-PDA framework can effectively and efficiently identify the topics and correlations within the Twitter data for monitoring and understanding public opinions, which would provide policy makers useful information and statistics for decision making.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.