{"title":"Intelligent and adaptive web data extraction system using convolutional and long short-term memory deep learning networks","authors":"Sudhir Kumar Patnaik;C. Narendra Babu;Mukul Bhave","doi":"10.26599/BDMA.2021.9020012","DOIUrl":null,"url":null,"abstract":"Data are crucial to the growth of e-commerce in today's world of highly demanding hyper-personalized consumer experiences, which are collected using advanced web scraping technologies. However, core data extraction engines fail because they cannot adapt to the dynamic changes in website content. This study investigates an intelligent and adaptive web data extraction system with convolutional and Long Short-Term Memory (LSTM) networks to enable automated web page detection using the You only look once (Yolo) algorithm and Tesseract LSTM to extract product details, which are detected as images from web pages. This state-of-the-art system does not need a core data extraction engine, and thus can adapt to dynamic changes in website layout. Experiments conducted on real-world retail cases demonstrate an image detection (precision) and character extraction accuracy (precision) of 97% and 99%, respectively. In addition, a mean average precision of 74%, with an input dataset of 45 objects or images, is obtained.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"4 4","pages":"279-297"},"PeriodicalIF":7.7000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9523493/09523501.pdf","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9523501/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 14
Abstract
Data are crucial to the growth of e-commerce in today's world of highly demanding hyper-personalized consumer experiences, which are collected using advanced web scraping technologies. However, core data extraction engines fail because they cannot adapt to the dynamic changes in website content. This study investigates an intelligent and adaptive web data extraction system with convolutional and Long Short-Term Memory (LSTM) networks to enable automated web page detection using the You only look once (Yolo) algorithm and Tesseract LSTM to extract product details, which are detected as images from web pages. This state-of-the-art system does not need a core data extraction engine, and thus can adapt to dynamic changes in website layout. Experiments conducted on real-world retail cases demonstrate an image detection (precision) and character extraction accuracy (precision) of 97% and 99%, respectively. In addition, a mean average precision of 74%, with an input dataset of 45 objects or images, is obtained.
在当今这个要求极高的超个性化消费者体验的世界里,数据对电子商务的发展至关重要,这些体验是使用先进的网络抓取技术收集的。然而,核心数据提取引擎失败了,因为它们无法适应网站内容的动态变化。本研究研究了一种具有卷积和长短期记忆(LSTM)网络的智能自适应网络数据提取系统,该系统使用You only look once(Yolo)算法和Tesseract LSTM来提取产品细节,这些细节被检测为网页中的图像。这个最先进的系统不需要核心数据提取引擎,因此可以适应网站布局的动态变化。在真实世界的零售案例中进行的实验表明,图像检测(精度)和字符提取精度(精度)分别为97%和99%。此外,在输入数据集为45个对象或图像的情况下,获得了74%的平均精度。
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.