{"title":"Decoupled Two-Phase Framework for Class-Incremental Few-Shot Named Entity Recognition","authors":"Yifan Chen;Zhen Huang;Minghao Hu;Dongsheng Li;Changjian Wang;Feng Liu;Xicheng Lu","doi":"10.26599/TST.2022.9010043","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"28 5","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10130021/10130023.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10130023/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
类增量少镜头命名实体识别的解耦两阶段框架
类增量少镜头命名实体识别(CIFNER)旨在识别只添加了几个新(新颖)类示例的实体类别。然而,现有的类增量方法通常会引入新的参数来适应新的类,并平等地对待所有信息,导致泛化能力较差。同时,很少有镜头方法需要对所有观察到的类进行采样,这使得它们很难转移到类增量设置中。因此,针对上述问题,提出了一种用于CIFNER任务的解耦两阶段框架方法。整个任务被转换为两个独立的任务,即实体跨度检测(ESD)和实体类别判别(ECD),这两个任务利用参数克隆和标签融合来分别学习不同级别的知识,如类别通用知识和类别特定知识。此外,还研究了不同的变体,如ESD模块中基于条件随机场(CRF)、基于词对的方法,以及ECD模块中基于加法、基于自然语言推理(NLI)和基于提示的方法,以证明解耦框架的可推广性。在三个命名实体识别(NER)数据集上进行的大量实验表明,我们的方法在CIFNER设置中实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。