Wang Bo (王 波) , Zhang Ning (张 宁) , Lin Quan (林 泉) , Chen Songcan (陈松灿) , Li Yuhua (李玉华)
{"title":"Semantic-Oriented Knowledge Transfer for Review Rating","authors":"Wang Bo (王 波) , Zhang Ning (张 宁) , Lin Quan (林 泉) , Chen Songcan (陈松灿) , Li Yuhua (李玉华)","doi":"10.1016/S1007-0214(10)70110-3","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of Web 2.0, more and more people are sharing their opinions about online products, so there is much product review data. However, it is difficult to compare products directly using ratings because many ratings are based on different scales or ratings are even missing. This paper addresses the following question: given textual reviews, how can we automatically determine the semantic orientations of reviewers and then rank different items? Due to the absence of ratings in many reviews, it is difficult to collect sufficient rating data for certain specific categories of products (e.g., movies), but it is easier to find rating data in another different but related category (e.g., books). We refer to this problem as transfer rating, and try to train a better ranking model for items in the interested category with the help of rating data from another related category. Specifically, we developed a ranking-oriented method called TRate for determining the semantic orientations and for ranking different items and formulated it in a regularized algorithm for rating knowledge transfer by bridging the two related categories via a shared latent semantic space. Tests on the Epinion dataset verified its effectiveness.</p></div>","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1007-0214(10)70110-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007021410701103","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of Web 2.0, more and more people are sharing their opinions about online products, so there is much product review data. However, it is difficult to compare products directly using ratings because many ratings are based on different scales or ratings are even missing. This paper addresses the following question: given textual reviews, how can we automatically determine the semantic orientations of reviewers and then rank different items? Due to the absence of ratings in many reviews, it is difficult to collect sufficient rating data for certain specific categories of products (e.g., movies), but it is easier to find rating data in another different but related category (e.g., books). We refer to this problem as transfer rating, and try to train a better ranking model for items in the interested category with the help of rating data from another related category. Specifically, we developed a ranking-oriented method called TRate for determining the semantic orientations and for ranking different items and formulated it in a regularized algorithm for rating knowledge transfer by bridging the two related categories via a shared latent semantic space. Tests on the Epinion dataset verified its effectiveness.