{"title":"Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions","authors":"J. Fu, J. Horowitz, M. Parey","doi":"10.1920/WP.CEM.2015.6815","DOIUrl":null,"url":null,"abstract":"This paper presents a test for exogeneity of explanatory variables in a nonparametric instrumental variables (IV) model whose structural function is identified through a conditional quantile restriction. Quantile regression models are increasingly important in applied econometrics. As with mean-regression models, an erroneous assumption that the explanatory variables in a quantile regression model are exogenous can lead to highly misleading results. In addition, a test of exogeneity based on an incorrectly specified parametric model can produce misleading results. This paper presents a test of exogeneity that does not assume the structural function belongs to a known finite-dimensional parametric family and does not require nonparametric estimation of this function. The latter property is important because, owing to the ill-posed inverse problem, a test based on a nonparametric estimator of the structural function has low power. The test presented here is consistent whenever the structural function differs from the conditional quantile function on a set of non-zero probability. The test has non-trivial power uniformly over a large class of structural functions that differ from the conditional quantile function by O(n-1/2) . The results of Monte Carlo experiments illustrate the usefulness of the test.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2015.6815","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a test for exogeneity of explanatory variables in a nonparametric instrumental variables (IV) model whose structural function is identified through a conditional quantile restriction. Quantile regression models are increasingly important in applied econometrics. As with mean-regression models, an erroneous assumption that the explanatory variables in a quantile regression model are exogenous can lead to highly misleading results. In addition, a test of exogeneity based on an incorrectly specified parametric model can produce misleading results. This paper presents a test of exogeneity that does not assume the structural function belongs to a known finite-dimensional parametric family and does not require nonparametric estimation of this function. The latter property is important because, owing to the ill-posed inverse problem, a test based on a nonparametric estimator of the structural function has low power. The test presented here is consistent whenever the structural function differs from the conditional quantile function on a set of non-zero probability. The test has non-trivial power uniformly over a large class of structural functions that differ from the conditional quantile function by O(n-1/2) . The results of Monte Carlo experiments illustrate the usefulness of the test.
期刊介绍:
The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.