{"title":"WTASR: Wavelet Transformer for Automatic Speech Recognition of Indian Languages","authors":"Tripti Choudhary;Vishal Goyal;Atul Bansal","doi":"10.26599/BDMA.2022.9020017","DOIUrl":null,"url":null,"abstract":"Automatic speech recognition systems are developed for translating the speech signals into the corresponding text representation. This translation is used in a variety of applications like voice enabled commands, assistive devices and bots, etc. There is a significant lack of efficient technology for Indian languages. In this paper, an wavelet transformer for automatic speech recognition (WTASR) of Indian language is proposed. The speech signals suffer from the problem of high and low frequency over different times due to variation in speech of the speaker. Thus, wavelets enable the network to analyze the signal in multiscale. The wavelet decomposition of the signal is fed in the network for generating the text. The transformer network comprises an encoder decoder system for speech translation. The model is trained on Indian language dataset for translation of speech into corresponding text. The proposed method is compared with other state of the art methods. The results show that the proposed WTASR has a low word error rate and can be used for effective speech recognition for Indian language.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 1","pages":"85-91"},"PeriodicalIF":7.7000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9962810/09962811.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9962811/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4
Abstract
Automatic speech recognition systems are developed for translating the speech signals into the corresponding text representation. This translation is used in a variety of applications like voice enabled commands, assistive devices and bots, etc. There is a significant lack of efficient technology for Indian languages. In this paper, an wavelet transformer for automatic speech recognition (WTASR) of Indian language is proposed. The speech signals suffer from the problem of high and low frequency over different times due to variation in speech of the speaker. Thus, wavelets enable the network to analyze the signal in multiscale. The wavelet decomposition of the signal is fed in the network for generating the text. The transformer network comprises an encoder decoder system for speech translation. The model is trained on Indian language dataset for translation of speech into corresponding text. The proposed method is compared with other state of the art methods. The results show that the proposed WTASR has a low word error rate and can be used for effective speech recognition for Indian language.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.