DPFEE: A High Performance Scalable Pre-Processor for Network Security Systems

Vinayaka Jyothi;Sateesh K. Addepalli;Ramesh Karri
{"title":"DPFEE: A High Performance Scalable Pre-Processor for Network Security Systems","authors":"Vinayaka Jyothi;Sateesh K. Addepalli;Ramesh Karri","doi":"10.1109/TMSCS.2017.2765324","DOIUrl":null,"url":null,"abstract":"Network Intrusion Detection Systems (NIDS) and Anti-Denial-of-Service (DoS) employ Deep Packet Inspection (DPI) which provides visibility to the content of payload to detect network attacks. All DPI engines assume a pre-processing step that extracts the various protocol-specific fields. However, application layer (L7) field extraction is computationally expensive. We propose a novel Deep Packet Field Extraction Engine (DPFEE) for application layer field extraction to hardware. DPFEE is a content-aware, grammar-based, Layer 7 programmable field extraction engine for text-based protocols. Our prototype DPFEE implementation for the Session Initiation Protocol (SIP) and HTTP protocol on a single FPGA, achieves a bandwidth of 408.5 Gbps and this can be scaled beyond 500 Gbps. Single DPFEE exhibits a speedup of 24X-89X against widely used preprocessors. Even against 12 multi-instances of a preprocessor, single DPFEE demonstrated a speedup of 4.7-7.4X. Single DPFEE achieved 3.14X higher bandwidth, 1020X lower latency, and 106X lower power consumption, when compared with 200 parallel streams of GPU accelerated preprocessor.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"4 1","pages":"55-68"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2017.2765324","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8078262/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Network Intrusion Detection Systems (NIDS) and Anti-Denial-of-Service (DoS) employ Deep Packet Inspection (DPI) which provides visibility to the content of payload to detect network attacks. All DPI engines assume a pre-processing step that extracts the various protocol-specific fields. However, application layer (L7) field extraction is computationally expensive. We propose a novel Deep Packet Field Extraction Engine (DPFEE) for application layer field extraction to hardware. DPFEE is a content-aware, grammar-based, Layer 7 programmable field extraction engine for text-based protocols. Our prototype DPFEE implementation for the Session Initiation Protocol (SIP) and HTTP protocol on a single FPGA, achieves a bandwidth of 408.5 Gbps and this can be scaled beyond 500 Gbps. Single DPFEE exhibits a speedup of 24X-89X against widely used preprocessors. Even against 12 multi-instances of a preprocessor, single DPFEE demonstrated a speedup of 4.7-7.4X. Single DPFEE achieved 3.14X higher bandwidth, 1020X lower latency, and 106X lower power consumption, when compared with 200 parallel streams of GPU accelerated preprocessor.
DPFEE:一种用于网络安全系统的高性能可扩展预处理器
网络入侵检测系统(NIDS)和反拒绝服务(DoS)采用深度分组检测(DPI),其提供对有效载荷内容的可见性以检测网络攻击。所有DPI引擎都采用预处理步骤,提取各种协议特定字段。然而,应用层(L7)字段提取在计算上是昂贵的。我们提出了一种新的深度分组字段提取引擎(DPFEE),用于硬件的应用层字段提取。DPFEE是一个内容感知、基于语法的第7层可编程字段提取引擎,用于基于文本的协议。我们在单个FPGA上实现了会话发起协议(SIP)和HTTP协议的原型DPFEE,实现了408.5 Gbps的带宽,并且可以扩展到500 Gbps以上。与广泛使用的预处理器相比,单个DPFEE表现出24X-89X的加速。即使面对12个多实例的预处理器,单个DPFEE也表现出4.7-7.4X的加速。与200个并行流的GPU加速预处理器相比,单个DPFE实现了3.14X的高带宽、1020X的低延迟和106X的低功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信