Satwinder Kaur, Lavish Kansal, G. S. Gaba, Fahad Alraddady, Sandeep Kumar Arora
{"title":"Impact of Hybrid PAPR Reduction Techniques on FBMC for 5G Applications","authors":"Satwinder Kaur, Lavish Kansal, G. S. Gaba, Fahad Alraddady, Sandeep Kumar Arora","doi":"10.21307/ijssis-2020-024","DOIUrl":null,"url":null,"abstract":"The filter bank multicarrier (FBMC) system suffers from the non-linear effects that arise due to a high peak-to-average power ratio (PAPR). Diverse precoding techniques are utilized to enhance the efficiency and robustness of FBMC. A high PAPR in the FBMC system can be overcome by a unique combination of precoding and conventional PAPR reduction techniques proposed in this paper. Different precoding schemes, discrete sine transform (DST) and discrete cosine transform (DCT), are combined with different PAPR reduction techniques, such as clipping and companding, to decrease the effects of the elevated PAPR in the FBMC system. The simulation results show a significant reduction in PAPR for both the transforms applied individually as well as in combination with conventional PAPR reduction methodologies. The MATLAB simulation outcome also depicts a substantial reduction in bit error rate (BER) in the range of 5 to 10 dB on the incorporation of DST/DCT precoding transforms in the conventional FBMC system.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":"13 1","pages":"1-10"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/ijssis-2020-024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3
Abstract
The filter bank multicarrier (FBMC) system suffers from the non-linear effects that arise due to a high peak-to-average power ratio (PAPR). Diverse precoding techniques are utilized to enhance the efficiency and robustness of FBMC. A high PAPR in the FBMC system can be overcome by a unique combination of precoding and conventional PAPR reduction techniques proposed in this paper. Different precoding schemes, discrete sine transform (DST) and discrete cosine transform (DCT), are combined with different PAPR reduction techniques, such as clipping and companding, to decrease the effects of the elevated PAPR in the FBMC system. The simulation results show a significant reduction in PAPR for both the transforms applied individually as well as in combination with conventional PAPR reduction methodologies. The MATLAB simulation outcome also depicts a substantial reduction in bit error rate (BER) in the range of 5 to 10 dB on the incorporation of DST/DCT precoding transforms in the conventional FBMC system.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity