Embedded Markov chain approximations in Skorokhod topologies

Pub Date : 2014-09-16 DOI:10.19195/0208-4147.39.2.2
Björn Böttcher
{"title":"Embedded Markov chain approximations in Skorokhod topologies","authors":"Björn Böttcher","doi":"10.19195/0208-4147.39.2.2","DOIUrl":null,"url":null,"abstract":"We prove a J1-tightness condition for embedded Markov chains and discuss four Skorokhod topologies in a unified manner. To approximate a continuous time stochastic process by discrete time Markov chains, one has several options to embed the Markov chains into continuous time processes. On the one hand, there is a Markov embedding which uses exponential waiting times. On the other hand, each Skorokhod topology naturally suggests a certain  embedding. These are the step function embedding for J1, the linear interpolation embedding forM1, the multistep embedding for J2 and a more general embedding for M2. We show that the convergence of the step function embedding in J1 implies the convergence of the other embeddings in the corresponding topologies. For the converse statement, a J1-tightness condition for embedded time-homogeneous Markov chains is given.Additionally, it is shown that J1 convergence is equivalent to the joint convergence in M1 and J2.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19195/0208-4147.39.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We prove a J1-tightness condition for embedded Markov chains and discuss four Skorokhod topologies in a unified manner. To approximate a continuous time stochastic process by discrete time Markov chains, one has several options to embed the Markov chains into continuous time processes. On the one hand, there is a Markov embedding which uses exponential waiting times. On the other hand, each Skorokhod topology naturally suggests a certain  embedding. These are the step function embedding for J1, the linear interpolation embedding forM1, the multistep embedding for J2 and a more general embedding for M2. We show that the convergence of the step function embedding in J1 implies the convergence of the other embeddings in the corresponding topologies. For the converse statement, a J1-tightness condition for embedded time-homogeneous Markov chains is given.Additionally, it is shown that J1 convergence is equivalent to the joint convergence in M1 and J2.
分享
查看原文
Skorokhod拓扑中的嵌入马尔可夫链近似
证明了嵌入马尔可夫链的j1紧性条件,并统一讨论了四种Skorokhod拓扑。为了用离散时间马尔可夫链近似连续时间随机过程,有几种方法可以将马尔可夫链嵌入到连续时间过程中。一方面,有一个使用指数等待时间的马尔可夫嵌入。另一方面,每一个Skorokhod拓扑都自然地暗示了一个特定的嵌入。这些是J1的阶跃函数嵌入,forM1的线性插值嵌入,J2的多步嵌入以及M2的更一般的嵌入。我们证明了阶跃函数嵌入在J1中的收敛性暗示了相应拓扑中其他嵌入的收敛性。对于相反的命题,给出了嵌入时齐次马尔可夫链的j1紧性条件。此外,还证明了J1收敛等价于M1和J2的联合收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信