{"title":"Removal of naphthalene from offshore produced water through immobilized nano-TiO2 aided photo-oxidation","authors":"Bo Liu, Bing Chen, Kenneth Lee, Baiyu Zhang, Yinchen Ma, Liang Jing","doi":"10.2166/WQRJC.2016.027","DOIUrl":null,"url":null,"abstract":"In order to increase the applicability of photocatalysis in treating offshore produced water (OPW), an immobilized catalyst was introduced into the UV irradiation system and its performance on the degradation of organic compounds in OPW was evaluated. Naphthalene was selected as the target pollutant owing to its abundance in produced water and its chemical property as a typical polycyclic aromatic hydrocarbon. Aeroxide ® P25 nano-scale TiO 2 powder was immobilized on glass slides by a heat attachment method and its photocatalytic capacity was compared to that of the original powder in terms of naphthalene removal efficiency. The results of adsorption showed that the reduction of catalysts’ surface area by immobilization was similar to that by agglomeration. The photocatalytic reaction rate constants in the homogeneous and immobilized systems were 0.00219 min −1 and 0.00305 min −1 , respectively, indicating that the immobilized catalyst had a better performance in photo-oxidation. The fouling of catalyst surface during the irradiation process came from the deposition of insoluble particles, organic matters, and the scaling of calcium. In summary, the immobilization of catalysts was more resistant to the substrate effects of OPW, indicating a more promising alternative in treating OPW.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2016.027","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2016.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 16
Abstract
In order to increase the applicability of photocatalysis in treating offshore produced water (OPW), an immobilized catalyst was introduced into the UV irradiation system and its performance on the degradation of organic compounds in OPW was evaluated. Naphthalene was selected as the target pollutant owing to its abundance in produced water and its chemical property as a typical polycyclic aromatic hydrocarbon. Aeroxide ® P25 nano-scale TiO 2 powder was immobilized on glass slides by a heat attachment method and its photocatalytic capacity was compared to that of the original powder in terms of naphthalene removal efficiency. The results of adsorption showed that the reduction of catalysts’ surface area by immobilization was similar to that by agglomeration. The photocatalytic reaction rate constants in the homogeneous and immobilized systems were 0.00219 min −1 and 0.00305 min −1 , respectively, indicating that the immobilized catalyst had a better performance in photo-oxidation. The fouling of catalyst surface during the irradiation process came from the deposition of insoluble particles, organic matters, and the scaling of calcium. In summary, the immobilization of catalysts was more resistant to the substrate effects of OPW, indicating a more promising alternative in treating OPW.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.