{"title":"Ammonium removal by a novel heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas stutzeri KTB from wastewater","authors":"Mao-hong Zhou, Hai-ren Ye, Xiao-wei Zhao","doi":"10.2166/WQRJC.2015.031","DOIUrl":null,"url":null,"abstract":"The effects of culture conditions on a newly isolated Pseudomonas stutzeri KTB's ability to simultaneously perform heterotrophic nitrification and aerobic denitrification were investigated to determine its potential of application in nitrogen removal from wastewater. The results from experiments in the presence of 10 mmol/L of ammonium were as follows: succinate was the preferred carbon source, and the optimum C/N ratio, temperature, and initial pH were 10, 30 °C, and 7–8, respectively. Nitrogen removal took place not only in the logarithmic phase but also in the stationary phase. Under the optimum conditions, the nitrogen removal rate increased as the ammonium concentration elevated, until it was as high as 60 mmol/L. Meanwhile, the maximum specific growth rate decreased. The highest nitrogen removal rate of 0.977 mmol/L/h was observed at 60 mmol/L of ammonium and the maximum removal ratio of 85.6% at 40 mmol/L when the bacterial treatment for 48 h was completed. The strain was vulnerable to even higher ammonium loads. When incubated in anaerobically digested hennery wastewater containing 43.85 mmol/L of ammonium and 2.32 mmol/L of nitrate, the removal ratio and rate reached 82.4% and 0.397 mmol/L/h, respectively. The strain might be a great candidate for ammonium removal from wastewater.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2015.031","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2015.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 4
Abstract
The effects of culture conditions on a newly isolated Pseudomonas stutzeri KTB's ability to simultaneously perform heterotrophic nitrification and aerobic denitrification were investigated to determine its potential of application in nitrogen removal from wastewater. The results from experiments in the presence of 10 mmol/L of ammonium were as follows: succinate was the preferred carbon source, and the optimum C/N ratio, temperature, and initial pH were 10, 30 °C, and 7–8, respectively. Nitrogen removal took place not only in the logarithmic phase but also in the stationary phase. Under the optimum conditions, the nitrogen removal rate increased as the ammonium concentration elevated, until it was as high as 60 mmol/L. Meanwhile, the maximum specific growth rate decreased. The highest nitrogen removal rate of 0.977 mmol/L/h was observed at 60 mmol/L of ammonium and the maximum removal ratio of 85.6% at 40 mmol/L when the bacterial treatment for 48 h was completed. The strain was vulnerable to even higher ammonium loads. When incubated in anaerobically digested hennery wastewater containing 43.85 mmol/L of ammonium and 2.32 mmol/L of nitrate, the removal ratio and rate reached 82.4% and 0.397 mmol/L/h, respectively. The strain might be a great candidate for ammonium removal from wastewater.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.