{"title":"Simultaneous regeneration of exhausted zeolite and nitrogen recovery using an air stripping method at alkaline pH","authors":"Qiaosi Deng, E. Elbeshbishy, Hyung-Sool Lee","doi":"10.2166/WQRJC.2016.007","DOIUrl":null,"url":null,"abstract":"Ammonium nitrogen recovery using natural zeolite from the permeates of anaerobic membrane bioreactors was investigated with batch and continuous experiments. Regeneration of exhausted zeolite was compared between mechanical shaking and air stripping, and experimental results showed the superiority of air stripping over the shaking. Liquid circulation and air flow rates were optimized in a continuous zeolite-packed column with a separate recovery system consisting of a regeneration chamber and a stripping column. The liquid circulation rate had significant effect neither on the regeneration efficiency ( RE ) nor the ammonia transfer efficiency ( ATE ), while the ATE significantly increased with increasing air flow rate. The effect of pH on ammonia recovery was also tested and the results showed that both RE and ATE significantly improved at alkaline pH. When pH increased from 9.5 to 12, the RE increased from 9.2% to 84% and the ATE increased from 54% to 92%. The results emphasized that the pH should be higher than 11 for efficient regeneration and recovery of ammonia. The preliminary economic analysis showed the superiority of the alkaline regeneration–air stripping process over the high pH regeneration and the conventional regeneration.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2016.007","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2016.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 14
Abstract
Ammonium nitrogen recovery using natural zeolite from the permeates of anaerobic membrane bioreactors was investigated with batch and continuous experiments. Regeneration of exhausted zeolite was compared between mechanical shaking and air stripping, and experimental results showed the superiority of air stripping over the shaking. Liquid circulation and air flow rates were optimized in a continuous zeolite-packed column with a separate recovery system consisting of a regeneration chamber and a stripping column. The liquid circulation rate had significant effect neither on the regeneration efficiency ( RE ) nor the ammonia transfer efficiency ( ATE ), while the ATE significantly increased with increasing air flow rate. The effect of pH on ammonia recovery was also tested and the results showed that both RE and ATE significantly improved at alkaline pH. When pH increased from 9.5 to 12, the RE increased from 9.2% to 84% and the ATE increased from 54% to 92%. The results emphasized that the pH should be higher than 11 for efficient regeneration and recovery of ammonia. The preliminary economic analysis showed the superiority of the alkaline regeneration–air stripping process over the high pH regeneration and the conventional regeneration.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.