Quality control of wastewater treatment operational data by continuous mass balancing: dealing with missing measurements and delayed outputs

IF 2 Q3 Environmental Science
A. Spindler, J. Krampe
{"title":"Quality control of wastewater treatment operational data by continuous mass balancing: dealing with missing measurements and delayed outputs","authors":"A. Spindler, J. Krampe","doi":"10.2166/WQRJC.2015.056","DOIUrl":null,"url":null,"abstract":"Continuous mass balancing defines a new standard in data quality validation. Likewise relying on the principles of mass conservation it outperforms long-term static mass balancing approaches because faults in data can be assigned to their time of occurrence. This research was carried out with practical application to routine operational data in mind and two major aspects are investigated to make this application feasible. Sludge concentrations of typically balanced components (chemical oxygen demand, total nitrogen, total phosphate) are not routinely measured in wastewater treatment plants. Therefore they need to be determined from alternative, more frequent measurements such as total suspended solids. To provide the necessary statistical basis for such determination, monthly sludge sampling was found sufficient. Further, contrary to long-term static mass balancing, the effects of delay between input and output loads must not be neglected in continuous mass balancing based on daily data. While a storage/release approach did not give the desired results, the consideration of hydraulic retention (first-order flow dynamics) fundamentally improved the performance of the proposed method.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":"50 1","pages":"228-239"},"PeriodicalIF":2.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2015.056","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2015.056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

Continuous mass balancing defines a new standard in data quality validation. Likewise relying on the principles of mass conservation it outperforms long-term static mass balancing approaches because faults in data can be assigned to their time of occurrence. This research was carried out with practical application to routine operational data in mind and two major aspects are investigated to make this application feasible. Sludge concentrations of typically balanced components (chemical oxygen demand, total nitrogen, total phosphate) are not routinely measured in wastewater treatment plants. Therefore they need to be determined from alternative, more frequent measurements such as total suspended solids. To provide the necessary statistical basis for such determination, monthly sludge sampling was found sufficient. Further, contrary to long-term static mass balancing, the effects of delay between input and output loads must not be neglected in continuous mass balancing based on daily data. While a storage/release approach did not give the desired results, the consideration of hydraulic retention (first-order flow dynamics) fundamentally improved the performance of the proposed method.
通过连续质量平衡的废水处理操作数据的质量控制:处理缺失的测量和延迟的输出
连续质量平衡定义了数据质量验证的新标准。同样,依靠质量守恒原理,它优于长期静态质量平衡方法,因为数据中的错误可以分配到它们发生的时间。本研究着眼于日常操作数据的实际应用,并从两个主要方面进行了研究,以使该应用可行。典型的平衡成分(化学需氧量、总氮、总磷酸盐)的污泥浓度在污水处理厂不进行常规测量。因此,它们需要通过替代的、更频繁的测量来确定,比如总悬浮固体。为了提供必要的统计依据,每月进行一次污泥取样就足够了。此外,与长期静态质量平衡相反,在基于日常数据的连续质量平衡中,输入和输出负载之间的延迟影响不容忽视。虽然存储/释放方法没有得到预期的结果,但考虑水力滞留(一阶流动动力学)从根本上提高了所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas: Impact of current and emerging contaminants on aquatic ecosystems Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk) Conservation and protection of aquatic environments Responsible resource development and water quality (mining, forestry, hydropower, oil and gas) Drinking water, wastewater and stormwater treatment technologies and strategies Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality Industrial water quality Used water: Reuse and resource recovery Groundwater quality (management, remediation, fracking, legacy contaminants) Assessment of surface and subsurface water quality Regulations, economics, strategies and policies related to water quality Social science issues in relation to water quality Water quality in remote areas Water quality in cold climates The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信