Distribution of arsenic in shallow aquifers of Guangzhou region, China: natural and anthropogenic impacts

IF 2 Q3 Environmental Science
Fan Liu, Guanxing Huang, Jichao Sun, Ji-hong Jing, Ying Zhang
{"title":"Distribution of arsenic in shallow aquifers of Guangzhou region, China: natural and anthropogenic impacts","authors":"Fan Liu, Guanxing Huang, Jichao Sun, Ji-hong Jing, Ying Zhang","doi":"10.2166/WQRJC.2014.014","DOIUrl":null,"url":null,"abstract":"To elucidate the distribution of arsenic in shallow aquifers of the Guangzhou region (South China), 85 groundwater samples were collected and 18 chemical parameters of them were analyzed. The arsenic concentration of groundwater ranged from below detection limit to 0.13 mg/L. The results showed that those areas with high arsenic concentration were characterized by porous aquifers, low-lying, relief topography and close proximity to fault belt and rivers. The reductive dissolution of Fe (hydr)oxides is the main control mechanism for arsenic enrichment in the river delta region where groundwater is mainly characterized by a reducing environment. This mechanism was well embodied in the areas with these geological and geographical features. Agricultural fertilizer could produce high levels of nitrate in groundwater and the reduction of it could restrain the enrichment of arsenic. Industrial effluents, sewage irrigation and the probable leakage from sewers could promote the arsenic content in groundwater by lateral flow and infiltration. In addition, the effect of ion competition between phosphate and arsenic occurred in sewer leakage areas characterized by middle-high construction leading to the elevation of arsenic concentrations. The arsenic distribution in groundwater was caused by these natural and anthropogenic factors jointly.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2014.014","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2014.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 6

Abstract

To elucidate the distribution of arsenic in shallow aquifers of the Guangzhou region (South China), 85 groundwater samples were collected and 18 chemical parameters of them were analyzed. The arsenic concentration of groundwater ranged from below detection limit to 0.13 mg/L. The results showed that those areas with high arsenic concentration were characterized by porous aquifers, low-lying, relief topography and close proximity to fault belt and rivers. The reductive dissolution of Fe (hydr)oxides is the main control mechanism for arsenic enrichment in the river delta region where groundwater is mainly characterized by a reducing environment. This mechanism was well embodied in the areas with these geological and geographical features. Agricultural fertilizer could produce high levels of nitrate in groundwater and the reduction of it could restrain the enrichment of arsenic. Industrial effluents, sewage irrigation and the probable leakage from sewers could promote the arsenic content in groundwater by lateral flow and infiltration. In addition, the effect of ion competition between phosphate and arsenic occurred in sewer leakage areas characterized by middle-high construction leading to the elevation of arsenic concentrations. The arsenic distribution in groundwater was caused by these natural and anthropogenic factors jointly.
广州地区浅层含水层砷的分布:自然和人为影响
为了阐明广州地区浅层含水层中砷的分布规律,采集了85份地下水样品,分析了18个化学参数。地下水砷浓度从低于检测限到0.13 mg/L不等。结果表明,高砷地区具有含水层多孔、地势低洼、地形起伏、靠近断裂带和河流等特征。在以还原环境为主要特征的河流三角洲地区,铁(氢)氧化物的还原性溶解是砷富集的主要控制机制。这一机制在具有这些地质地理特征的地区得到了很好的体现。农业肥料可使地下水中硝酸盐含量偏高,减少硝酸盐含量可抑制砷的富集。工业废水、污水灌溉和可能的下水道渗漏可通过横向流动和入渗促进地下水中砷的含量。此外,在以中高层建筑为特征的下水道渗漏区,磷酸盐和砷之间的离子竞争效应导致砷浓度升高。地下水中砷的分布是自然和人为因素共同作用的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas: Impact of current and emerging contaminants on aquatic ecosystems Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk) Conservation and protection of aquatic environments Responsible resource development and water quality (mining, forestry, hydropower, oil and gas) Drinking water, wastewater and stormwater treatment technologies and strategies Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality Industrial water quality Used water: Reuse and resource recovery Groundwater quality (management, remediation, fracking, legacy contaminants) Assessment of surface and subsurface water quality Regulations, economics, strategies and policies related to water quality Social science issues in relation to water quality Water quality in remote areas Water quality in cold climates The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信