{"title":"Long short-term memory network based deep transfer learning approach for sales forecasting","authors":"Begüm Erol, Tülin Inkaya","doi":"10.17341/gazimmfd.1089173","DOIUrl":null,"url":null,"abstract":"Üretim ve hizmet sektörlerinde faaliyet gösteren firmalar, artan rekabet koşulları ile mücadele edebilmek için belirsizlik altında geleceğe yönelik çeşitli kararlar alırlar. Bu kritik kararlardan biri satış tahminidir. Dijital teknolojilerin yaygınlaşması ile derin öğrenme yaklaşımlarının satış tahmininde kullanımı artmaktadır. Derin öğrenme, başarılı sonuçlar vermesine rağmen büyük miktarda veri ile uzun eğitim sürelerine ihtiyaç duymaktadır. Bu duruma çözüm olarak problemler arası bilgi aktarımını sağlayan transfer öğrenme (TL) kullanılmaktadır. Transfer öğrenme, kaynak veriler ile modelin eğitimini ve hedef veriye aktarımını sağlamaktadır. Bu çalışmada, farklı ürünlerin satış tahmini modellerinden elde edilen bilginin gelecekteki tahmin modellerine aktarımını sağlamak üzere derin transfer öğrenme yaklaşımı önerilmiştir. Satış verisi tek değişkenli zaman serisi olarak ele alınmıştır. Kaynak veri seçiminde aktarılabilirlik ölçütü olarak hedef ve kaynak veri arasındaki gerçek cezalı düzenleme uzaklığı (ERP) kullanılmıştır. Seçilen kaynak veri ile zamansal bağımlılıkların modellenmesini sağlayan uzun kısa vadeli hafıza (LSTM) ağı eğitilmiştir. Ön eğitilen LSTM ağında parametre transferi yapılarak hedef veri için ERP-LSTM-TL tahmin modeli oluşturulmuştur. Çeşitli sektörlere ait satış veri kümelerinde yapılan deneysel çalışmalarda ERP-LSTM-TL, hedef veri ile eğitilen LSTM’e göre tahmin doğruluğunda ve eğitim süresinde iyileşme sağlamıştır. Önerilen yaklaşımın performansı klasik tahmin ve makine öğrenmesi yöntemlerinin performansları ile karşılaştırılmıştır. ERP-LSTM-TL karşılaştırılan yöntemlere göre istatistiksel olarak daha iyi sonuç vermiştir.","PeriodicalId":51103,"journal":{"name":"Journal of the Faculty of Engineering and Architecture of Gazi University","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Faculty of Engineering and Architecture of Gazi University","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17341/gazimmfd.1089173","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Üretim ve hizmet sektörlerinde faaliyet gösteren firmalar, artan rekabet koşulları ile mücadele edebilmek için belirsizlik altında geleceğe yönelik çeşitli kararlar alırlar. Bu kritik kararlardan biri satış tahminidir. Dijital teknolojilerin yaygınlaşması ile derin öğrenme yaklaşımlarının satış tahmininde kullanımı artmaktadır. Derin öğrenme, başarılı sonuçlar vermesine rağmen büyük miktarda veri ile uzun eğitim sürelerine ihtiyaç duymaktadır. Bu duruma çözüm olarak problemler arası bilgi aktarımını sağlayan transfer öğrenme (TL) kullanılmaktadır. Transfer öğrenme, kaynak veriler ile modelin eğitimini ve hedef veriye aktarımını sağlamaktadır. Bu çalışmada, farklı ürünlerin satış tahmini modellerinden elde edilen bilginin gelecekteki tahmin modellerine aktarımını sağlamak üzere derin transfer öğrenme yaklaşımı önerilmiştir. Satış verisi tek değişkenli zaman serisi olarak ele alınmıştır. Kaynak veri seçiminde aktarılabilirlik ölçütü olarak hedef ve kaynak veri arasındaki gerçek cezalı düzenleme uzaklığı (ERP) kullanılmıştır. Seçilen kaynak veri ile zamansal bağımlılıkların modellenmesini sağlayan uzun kısa vadeli hafıza (LSTM) ağı eğitilmiştir. Ön eğitilen LSTM ağında parametre transferi yapılarak hedef veri için ERP-LSTM-TL tahmin modeli oluşturulmuştur. Çeşitli sektörlere ait satış veri kümelerinde yapılan deneysel çalışmalarda ERP-LSTM-TL, hedef veri ile eğitilen LSTM’e göre tahmin doğruluğunda ve eğitim süresinde iyileşme sağlamıştır. Önerilen yaklaşımın performansı klasik tahmin ve makine öğrenmesi yöntemlerinin performansları ile karşılaştırılmıştır. ERP-LSTM-TL karşılaştırılan yöntemlere göre istatistiksel olarak daha iyi sonuç vermiştir.
期刊介绍:
Gazi University Journal of the Faculty of Engineering and Architecture; Engineering qualifications described below and in the field of architecture research papers and invited articles by scanning is considered to be Turkish.