{"title":"GENOTOXICITY OF METAL-CONTAINING NANOPARTICLES","authors":"E. A. Kapustina, E. Titov, М.А. Novikov","doi":"10.21687/0233-528x-2022-56-1-26-31","DOIUrl":null,"url":null,"abstract":"No more than 100 nm large, nanoparticles (NPs) are distinguished by unusual mechanical, electrical, optical, thermal and magnetic properties. They are used in biology, pharmacology, medicine, chemistry, physics, materials technology and engineering industry. Nanoparticles penetrate in organism through the skin, GIT and airways. Their genotoxicity depends on size, form, mode of action and composition. Two principal mechanisms of NPs genotoxicity are primary and secondary. The primary mechanism is realized in direct interaction with the genome; the secondary mechanism is achieved through mediation of the active forms of oxygen. NPs can modulate the epigenome by altering the gene functions and do not change the DNA sequence directly. Consequences of prolonged exposure to low NPs doses on the human organism still remain uninvestigated.","PeriodicalId":8683,"journal":{"name":"Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21687/0233-528x-2022-56-1-26-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
No more than 100 nm large, nanoparticles (NPs) are distinguished by unusual mechanical, electrical, optical, thermal and magnetic properties. They are used in biology, pharmacology, medicine, chemistry, physics, materials technology and engineering industry. Nanoparticles penetrate in organism through the skin, GIT and airways. Their genotoxicity depends on size, form, mode of action and composition. Two principal mechanisms of NPs genotoxicity are primary and secondary. The primary mechanism is realized in direct interaction with the genome; the secondary mechanism is achieved through mediation of the active forms of oxygen. NPs can modulate the epigenome by altering the gene functions and do not change the DNA sequence directly. Consequences of prolonged exposure to low NPs doses on the human organism still remain uninvestigated.