Topological K-theory of affine Hecke algebras

IF 0.5 Q3 MATHEMATICS
M. Solleveld
{"title":"Topological K-theory of affine Hecke algebras","authors":"M. Solleveld","doi":"10.2140/akt.2018.3.395","DOIUrl":null,"url":null,"abstract":"Let H(R,q) be an affine Hecke algebra with a positive parameter function q. We are interested in the topological K-theory of H(R,q), that is, the K-theory of its C*-completion C*_r (R,q). We will prove that $K_* (C*_r (R,q))$ does not depend on the parameter q. For this we use representation theoretic methods, in particular elliptic representations of Weyl groups and Hecke algebras. \nThus, for the computation of these K-groups it suffices to work out the case q=1. These algebras are considerably simpler than for q not 1, just crossed products of commutative algebras with finite Weyl groups. We explicitly determine $K_* (C*_r (R,q))$ for all classical root data R, and for some others as well. This will be useful to analyse the K-theory of the reduced C*-algebra of any classical p-adic group. \nFor the computations in the case q=1 we study the more general situation of a finite group \\Gamma acting on a smooth manifold M. We develop a method to calculate the K-theory of the crossed product $C(M) \\rtimes \\Gamma$. In contrast to the equivariant Chern character of Baum and Connes, our method can also detect torsion elements in these K-groups.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2016-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/akt.2018.3.395","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2018.3.395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

Abstract

Let H(R,q) be an affine Hecke algebra with a positive parameter function q. We are interested in the topological K-theory of H(R,q), that is, the K-theory of its C*-completion C*_r (R,q). We will prove that $K_* (C*_r (R,q))$ does not depend on the parameter q. For this we use representation theoretic methods, in particular elliptic representations of Weyl groups and Hecke algebras. Thus, for the computation of these K-groups it suffices to work out the case q=1. These algebras are considerably simpler than for q not 1, just crossed products of commutative algebras with finite Weyl groups. We explicitly determine $K_* (C*_r (R,q))$ for all classical root data R, and for some others as well. This will be useful to analyse the K-theory of the reduced C*-algebra of any classical p-adic group. For the computations in the case q=1 we study the more general situation of a finite group \Gamma acting on a smooth manifold M. We develop a method to calculate the K-theory of the crossed product $C(M) \rtimes \Gamma$. In contrast to the equivariant Chern character of Baum and Connes, our method can also detect torsion elements in these K-groups.
仿射Hecke代数的拓扑k理论
设H(R,q)是一个带正参数函数q的仿射Hecke代数,我们感兴趣的是H(R,q)的拓扑k理论,即它的C*补全C*_r (R,q)的k理论。我们将证明$K_* (C*_r (R,q))$不依赖于参数q。为此我们使用了表示理论方法,特别是Weyl群和Hecke代数的椭圆表示。因此,对于这些k群的计算,只要解出q=1的情况就足够了。这些代数比q01要简单得多,它们只是有限Weyl群的交换代数的叉积。我们明确地确定了$K_* (C*_r (R,q))$对于所有经典根数据R,以及对于其他一些数据。这将有助于分析任何经典p进群的约简C*-代数的k理论。对于q=1情况下的计算,我们研究了作用于光滑流形M上的有限群\Gamma的更一般的情况。我们发展了一种计算交叉积$C(M) \r乘以\Gamma$的k理论的方法。与Baum和Connes的等变Chern特征相比,我们的方法也可以检测这些k群中的扭转元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信