Tate tame symbol and the joint torsion of commuting operators

IF 0.5 Q3 MATHEMATICS
Jens Kaad, R. Nest
{"title":"Tate tame symbol and the joint torsion of commuting operators","authors":"Jens Kaad, R. Nest","doi":"10.2140/AKT.2020.5.181","DOIUrl":null,"url":null,"abstract":"We investigate determinants of Koszul complexes of holomorphic functions of a commuting tuple of bounded operators acting on a Hilbert space. Our main result shows that the analytic joint torsion, which compares two such determinants, can be computed by a local formula which involves a tame symbol of the involved holomorphic functions. As an application we are able to extend the classical tame symbol of meromorphic functions on a Riemann surface to the more involved setting of transversal functions on a complex analytic curve. This follows by spelling out our main result in the case of Toeplitz operators acting on the Hardy space over the polydisc.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/AKT.2020.5.181","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AKT.2020.5.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate determinants of Koszul complexes of holomorphic functions of a commuting tuple of bounded operators acting on a Hilbert space. Our main result shows that the analytic joint torsion, which compares two such determinants, can be computed by a local formula which involves a tame symbol of the involved holomorphic functions. As an application we are able to extend the classical tame symbol of meromorphic functions on a Riemann surface to the more involved setting of transversal functions on a complex analytic curve. This follows by spelling out our main result in the case of Toeplitz operators acting on the Hardy space over the polydisc.
交换算子的联合扭度与泰特驯服符号
研究了作用于Hilbert空间上的有界算子交换元的全纯函数的Koszul复形的行列式。我们的主要结果表明,比较两个这样的行列式的解析联合扭转可以用包含所涉全纯函数的正则符号的局部公式来计算。作为一个应用,我们能够将黎曼曲面上亚纯函数的经典正则符号推广到复杂解析曲线上更复杂的横函数集。接下来,我们将给出作用于多盘上Hardy空间的Toeplitz算子的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信