{"title":"Tate tame symbol and the joint torsion of commuting operators","authors":"Jens Kaad, R. Nest","doi":"10.2140/AKT.2020.5.181","DOIUrl":null,"url":null,"abstract":"We investigate determinants of Koszul complexes of holomorphic functions of a commuting tuple of bounded operators acting on a Hilbert space. Our main result shows that the analytic joint torsion, which compares two such determinants, can be computed by a local formula which involves a tame symbol of the involved holomorphic functions. As an application we are able to extend the classical tame symbol of meromorphic functions on a Riemann surface to the more involved setting of transversal functions on a complex analytic curve. This follows by spelling out our main result in the case of Toeplitz operators acting on the Hardy space over the polydisc.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/AKT.2020.5.181","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AKT.2020.5.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate determinants of Koszul complexes of holomorphic functions of a commuting tuple of bounded operators acting on a Hilbert space. Our main result shows that the analytic joint torsion, which compares two such determinants, can be computed by a local formula which involves a tame symbol of the involved holomorphic functions. As an application we are able to extend the classical tame symbol of meromorphic functions on a Riemann surface to the more involved setting of transversal functions on a complex analytic curve. This follows by spelling out our main result in the case of Toeplitz operators acting on the Hardy space over the polydisc.