Perfect fluid spacetimes with harmonic generalized curvature tensor

Pub Date : 2019-01-01 DOI:10.18910/71142
C. Mantica, U. De, Y. Suh, L. Molinari
{"title":"Perfect fluid spacetimes with harmonic generalized curvature tensor","authors":"C. Mantica, U. De, Y. Suh, L. Molinari","doi":"10.18910/71142","DOIUrl":null,"url":null,"abstract":"We show that n-dimensional perfect fluid spacetimes with divergence-free conformal curvature tensor and constant scalar curvature are generalized Robertson Walker (GRW) spacetimes; as a consequence a perfect fluid Yang pure space is a GRW spacetime. We also prove that perfect fluid spacetimes with harmonic generalized curvature tensor are, under certain conditions, GRW spacetimes. As particular cases, perfect fluids with divergence-free projective, concircular, conharmonic or quasi-conformal curvature tensor are GRW spacetimes. Finally, we explore some physical consequences of such results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/71142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We show that n-dimensional perfect fluid spacetimes with divergence-free conformal curvature tensor and constant scalar curvature are generalized Robertson Walker (GRW) spacetimes; as a consequence a perfect fluid Yang pure space is a GRW spacetime. We also prove that perfect fluid spacetimes with harmonic generalized curvature tensor are, under certain conditions, GRW spacetimes. As particular cases, perfect fluids with divergence-free projective, concircular, conharmonic or quasi-conformal curvature tensor are GRW spacetimes. Finally, we explore some physical consequences of such results.
分享
查看原文
具有调和广义曲率张量的完美流体时空
证明了具有无散度共形曲率张量和常数标量曲率的n维完美流体时空是广义Robertson Walker (GRW)时空;因此,完美流体杨纯空间是一个GRW时空。我们还证明了具有调和广义曲率张量的完美流体时空在一定条件下是GRW时空。作为特殊情况,具有无散度射影、共圆、共调和或拟共形曲率张量的完美流体是GRW时空。最后,我们探讨了这些结果的一些物理后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信